ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Директор/Декан института агарной генетики и селекции					
~	>>		20	Γ.	

УТВЕРЖДАЮ

Рабочая программа дисциплины

Б1.О.08 Инструментальные методы исследований

35.04.05 Садоводство

Агробиотехнологии в садоводстве и питомниководстве

магистр

очная

1. Цель дисциплины

Целью освоения дисциплины «Инструментальные методы исследований» является овладение инструментальными методами исследования показателей почвенного плодородия и качества продукции растениеводства.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций ОП ВО и овладение следующими результатами обучения по дисциплине:

Код и наименование	Код и наименование	Перечень планируемых результатов обучения		
код и наименование компетенции	код и наименование индикатора достижения компетенции	по дисциплине		
ОПК-4 Способен				
проводить научные исследования, анализировать результаты и готовить отчетные документы;	современных методов исследования, планирования и проведения экспериментов в области	инструментальной диагностики физических, биохимические и химические условий среды обитания растений умеет		
ОПК-4 Способен проводить научные исследования, анализировать результаты и готовить отчетные документы;	*	Современных методик научных исследований в области диагностики плодородия почвы		
ОПК-4 Способен проводить научные исследования, анализировать результаты и готовить отчетные документы;	анализирует результаты исследований, готовит отчетные документы и	знает Основ подготовки отчетных документов по результатам научных исследований в области управления питанием растений и плодородием почвы умеет Использовать результатам научных исследований в области управления питанием растений и плодородием почвы для подготовки отчетных документов владеет навыками Составлять отчетные документы по		

		результатам научных исследований в области управления питанием растений и плодородием почвы
ПК-5 Способен	ПК-5.2 Применяет	знает
организовать проведение	современные технологии	Методы расчета экономической
экспериментов в	обработки и	эффективности применения технологических
садоводстве и	представления	приемов, удобрений, средств защиты растений,
питомниководстве по	экспериментальных	новых сортов
оценке эффективности	данных с	умеет
'	использованием	Разработка стратегии развития растениеводства
элементов технологий в	специального	в организации
условиях производства и		владеет навыками
обработать результаты,	обеспечения и методов	Расчет экономической эффективности
полученные в опытах с	математической	применения технологических приемов,
использованием методов	статистики	удобрений, средств защиты растений, новых
математической		сортов
статистики		

3. Место дисциплины в структуре образовательной программы

Дисциплина «Инструментальные методы исследований» является дисциплиной обязательной части программы.

Изучение дисциплины осуществляется в 3семестре(-ах).

Для освоения дисциплины «Инструментальные методы исследований» студенты используют знания, умения и навыки, сформированные в процессе изучения дисциплин:

История и методология научной агрономии

Инновационные технологии в садоводстве

ГИС в садоводстве и питомниководстве

Освоение дисциплины «Инструментальные методы исследований» является необходимой основой для последующего изучения следующих дисциплин:

Научно-исследовательская работа

Преддипломная практика

Подготовка к сдаче и сдача государственного экзамена

Выполнение и защита выпускной квалификационной работы

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу с обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины «Инструментальные методы исследований» в соответствии с рабочим учебным планом и ее распределение по видам работ представлены ниже.

		Контактн	ая работа с преп	одавателем, час			Форма
Семестр	Трудоемк ость час/з.е.	лек- ции	практические занятия	лабораторные занятия	Самостоя- тельная ра- бота, час	Контроль, час	промежуточной аттестации (форма контроля)
3	144/4	6		26	76	36	Эк
в т.ч. часон в интеракт		2		4			
практической подготовки		2		4	8		

	Трудоемк		Внеаудито	рная контактн	ая работа с преподава	гелем, час/чел	
Семестр	ость	Курсовая работа	Курсовой проект	Зачет	Дифференцирован ный зачет	Консультации перед экзаменом	Экзамен

3	144/4			0.25

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

				Коли	чество	часоі	3	_	Оценочное	Код
№	Наименование раздела/темы	Семестр			Семи ие зап	-	ьная	Формы текущего контроля	средство проверки результатов	оров достиж ения компете нций ОПК-4.1, ОПК-4.2, ОПК-
		Cen	олеов	Лекции	Практические	Лабораторные	Самостоятельная работа	успеваемости и промежуточной аттестации	достижения индикаторов компетенций	ения компете
1.	1 раздел. Инструментальная диагностика физических условий среды обитания растений									
1.1.	Инструментальная диагностика физических условий среды обитания растений	3	10	2		8	16		Устный опрос, Практико- ориентированн ые задачи и ситуационные задачи, Круглый стол	4.1, ОПК- 4.2,
1.2.	Биохимические и химические методы исследования растений и среды их обитания	3	14	2		12	30	KT 1	Коллоквиум, Практико- ориентированн ые задачи и ситуационные задачи	ОПК- 4.1, ОПК- 4.2, ОПК- 4.3, ПК- 5.2
1.3.	Инструментальная диагностика биологических факторов среды обитания растений	3	8	2		6	30	KT 2	Коллоквиум, Практико- ориентированн ые задачи и ситуационные задачи	ОПК- 4.1, ОПК- 4.2, ОПК- 4.3, ПК- 5.2
	Промежуточная аттестация			T				Эк		
	Итого		144	6		26	76			
	Итого		144	6		26	76			

5.1. Лекционный курс с указанием видов интерактивной формы проведения занятий

Тема лекции (и/или наименование раздел) (вид интерактивной формы проведения занятий)/ (практическая подготовка)	Содержание темы (и/или раздела)	Всего, часов / часов интерактивных занятий/ практическая подготовка
Инструментальная диагностика физических условий среды обитания растений	Инструментальная диагностика физических условий среды обитания растений	2/2

Биохимические и	Биохимические и химические методы исследования растений и среды их обитания	
химические методы исследования растений и	исследования растении и среды их обитания	2/-
среды их обитания		
Инструментальная	Инструментальная диагностика биологических	
диагностика биологических	факторов среды обитания растений	2/2
факторов среды обитания		2, 2
растений		
Итого		6

5.2.2. Лабораторные занятия с указанием видов проведения занятий в интерактивной форме

Наименование раздела дисциплины	Формы проведения и темы занятий (вид интерактивной формы проведения занятий)/(практическая подготовка)	Всего, часов интерактивных занятий/ практическая подготовка		
		вид	часы	
Инструмен тальная диагностика физических условий среды обитания растений	Подготовка оборудования и лабораторной посуды для анализа. Отбор образцов. Технические средства отбора. Протокол отбора проб. Этикетирование, транспортировка, сушка, просеивание, размол, хранение	лаб.	8	
Биохимические и химические методы исследования растений и среды их обитания	Определение содержания калия в почве и растениях пламенно-фотометрическим методом	лаб.	2	
Биохимические и химические методы исследования растений и среды их обитания	Определение макро и микроэлементов в растениях методом атомно-абсорбционной спектрофотометрии (AAC).	лаб.	6	
Биохимические и химические методы исследования растений и среды их обитания	Краткая характеристика атомно- абсорбционного спектрофотометра Nova 300. Управление прибором, обработка результатов анализа, отображение и хранение информации	лаб.	4	
Инструментальная диагностика биологических факторов среды обитания растений	Определение органического вещества почвы	лаб.	6	

5.3. Курсовой проект (работа) учебным планом не предусмотрен

5.4. Самостоятельная работа обучающегося

Темы и/или виды самостоятельной работы	Часы
Инструментальная диагностика физических условий среды обитания растений	16

Биохимические и химические методы исследования растений и среды их обитания	30
Инструментальная диагностика биологических факторов среды обитания растений	30

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Учебно-методическое обеспечение для самостоятельной работы обучающегося по дисциплине «Инструментальные методы исследований» размещено в электронной информационно-образовательной сре-де Университета и доступно для обучающегося через его личный кабинет на сайте Университета. Учебно-методическое обеспечение включает:

- 1. Рабочую программу дисциплины «Инструментальные методы исследований».
- 2.Методические рекомендации для организации самостоятельной работы обучающегося по дисциплине «Инструментальные методы исследований».
 - 3. Методические рекомендации по выполнению письменных работ () (при наличии).
- 4. Методические рекомендации по выполнению контрольной работы студентами заочной формы обучения (при наличии)
 - 5. Методические указания по выполнению курсовой работы (проекта) (при наличии).

Для успешного освоения дисциплины, необходимо самостоятельно детально изучить представленные темы по рекомендуемым источникам информации:

No		Рекоменду	уемые источники ин (№ источника)	формации метод. лит. (из п.8 РПД) ЛЗ.1 ЛЗ.1
п/п	Темы для самостоятельного изучения	основная (из п.8 РПД)	дополнительная (из п.8 РПД)	
1	Инструментальная диагностика физических условий среды обитания растений. Инструментальная диагностика физических условий среды обитания растений	Л1.1, Л1.2, Л1.3, Л1.4, Л1.5, Л1.6, Л1.7, Л1.8	Л2.1	ЛЗ.1
2	Биохимические и химические методы исследования растений и среды их обитания. Биохимические и химические методы исследования растений и среды их обитания	Л1.1, Л1.2, Л1.3, Л1.4, Л1.5, Л1.6, Л1.7, Л1.8	Л2.1	ЛЗ.1
3	Инструментальная диагностика биологических факторов среды обитания растений. Инструментальная диагностика биологических факторов среды обитания растений	Л1.1, Л1.2, Л1.3, Л1.4, Л1.5, Л1.6, Л1.7, Л1.8	Л2.1	ЛЗ.1

7. Фонд оценочных средств (оценочных материалов) для проведения промежуточной аттестации обучающихся по дисциплине «Инструментальные методы исследований»

7.1. Перечень индикаторов компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Индикатор компетенции (код и содержание)	Дисциплины/элементы программы (практики, ГИА), участвующие в формировании индикатора	1		2	2	
	компетен-ции	1	1 2		4	
ОПК-4.1:Демонстрирует знание традиционных и	Инновационные технологии в садоводстве	X				
современных методов исследования,	История и методология научной агрономии	X				
планирования и проведения экспериментов в области земледелия и растениеводства	Научно-исследовательская работа				х	

Индикатор компетенции (код и содержание)	Дисциплины/элементы программы (практики, ГИА), участвующие в формировании индикатора	1		2	2	
	компетен-ции	1	2	3	4	
ОПК-4.2:Разрабатывает планы, программы,	История и методология научной агрономии	X				
методики и проводит научные исследования в области агрономии	Научно-исследовательская работа				X	
ОПК-4.3:Обобщает и анализирует результаты исследований, готовит отчетные документы и рекомендации по результатам научных исследований	Научно-исследовательская работа				х	
ПК-5.2:Применяет современные технологии	ГИС в садоводстве и питомниководстве	X				
обработки и представления экспериментальных данных с использованием	Методы планирования и программирования продуктивности плодовоягодных культур			x		
специального программного обеспечения и методов математической статистики	Преддипломная практика				х	

7.2. Критерии и шкалы оценивания уровня усвоения индикатора компетенций, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Оценка знаний, умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций по дисциплине «Инструментальные методы исследований» проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль проводится в течение семестра с целью определения уровня усвоения обучающимися знаний, формирования умений и навыков, своевременного выявления преподавателем недостатков в подготовке обучающихся и принятия необходимых мер по её корректировке, а также для совершенствования методики обучения, организации учебной работы и оказания индивидуальной помощи обучающемуся.

Промежуточная аттестация по дисциплине «Инструментальные методы исследований» проводится в виде Экзамен.

За знания, умения и навыки, приобретенные студентами в период их обучения, выставляются оценки «ЗАЧТЕНО», «НЕ ЗАЧТЕНО». (или «ОТЛИЧНО», «ХОРОШО», «УДОВЛЕТВОРИТЕЛЬНО», «НЕУДОВЛЕТВОРИТЕЛЬНО» для дифференцированного зачета/экзамена)

Для оценивания знаний, умений, навыков и (или) опыта деятельности в университете применяется балльно-рейтинговая система оценки качества освоения образовательной программы. Оценка проводится при проведении текущего контроля успеваемости и промежуточных аттестаций обучающихся. Рейтинговая оценка знаний является интегрированным показателем качества теоретиче-ских и практических знаний и навыков студентов по дисциплине.

Состав балльно-рейтинговой оценки студентов очной формы обучения

Для студентов очной формы обучения знания по осваиваемым компетенциям формируются на лекционных и практических занятиях, а также в процессе самостоятельной подготовки.

В соответствии с балльно-рейтинговой системой оценки, принятой в Университете студентам начисляются баллы по следующим видам работ:

№ контрольной точки	Оценочное средство результатов индикаторов достижения компетенций	Максимальное количество баллов
	3 семестр	

KT 1	Коллоквиум	8				
KT 1	Практико-ориентированные за,	дачи и ситуацион	ные задачи	7		
KT 2	Коллоквиум			8		
KT 2	Практико-ориентированные за,	дачи и ситуацион	ные задачи	7		
Сумма баллов п	о итогам текущего контроля			30		
Посещение лекци	20					
Посещение практ	Посещение практических/лабораторных занятий					
Результативности	Результативность работы на практических/лабораторных занятиях					
Итого				100		
№ контрольной точки	знаний студентов					
	3 семестр					

		8 баллов заслуживает студент,
		ответивший полностью и без
		ошибок на предложенные вопросы
		и показавший знания основных
		понятий дисциплины в
		соответствии с обязательной
		программой курса и
		рекомендованной основной
		литературой. 6 баллов дан
		недостаточно полный и
		недостаточно развернутый ответ.
		Логика и последовательность
		изложения имеют нарушения.
		Допущены ошибки в раскрытии
		понятий, употреблении терминов.
		Студент не способен
		самостоятельно выделить
		существенные и несущественные
		признаки и причинно-следственные
		связи. Студент может
		конкретизировать обобщенные
		знания, доказав на примерах их
KT 1	Коллоквиум	8 основные положения только с
		помощью преподавателя. Речевое
		оформление требует поправок, коррекции. 4 балла дан неполный
		ответ, представляющий собой
		_
		разрозненные знания по теме вопроса с существенными
		ошибками в определениях.
		Присутствуют фрагментарность,
		нелогичность изложения. Студент
		не осознает связь данного понятия,
		теории, явления с другими
		объектами дисциплины.
		Отсутствуют выводы,
		конкретизация и доказательность
		изложения. Речь неграмотная.
		Дополнительные и уточняющие
		вопросы преподавателя не приводят
		к коррекции ответа студента не
		только на поставленный вопрос, но
		и на другие вопросы дисциплины. 0
		баллов выставляется студенту при
		полном отсутствии ответа,
		имеющего отношение к вопросу.
	L	,

			7 баллов заслуживает студент,
			ответивший полностью и без
			ошибок на предложенные вопросы
			и показавший знания основных
			понятий дисциплины в
			соответствии с обязательной
			программой курса и
			рекомендованной основной
			литературой. 3 балла дан
			недостаточно полный и
			недостаточно развернутый ответ.
			Логика и последовательность
			изложения имеют нарушения.
			Допущены ошибки в раскрытии
			понятий, употреблении терминов.
			Студент не способен
			самостоятельно выделить
			существенные и несущественные
			признаки и причинно-следственные
	Практико-ориентированные		связи. Студент может
			конкретизировать обобщенные
			знания, доказав на примерах их
I/T 1		7	основные положения только с
KT 1	задачи и ситуационные	/	помощью преподавателя. Речевое
	задачи		оформление требует поправок,
			коррекции. 1 балл дан неполный
			ответ, представляющий собой
			разрозненные знания по теме
			вопроса с существенными
			ошибками в определениях.
			Присутствуют фрагментарность,
			нелогичность изложения. Студент
			не осознает связь данного понятия,
			теории, явления с другими
			объектами дисциплины.
			Отсутствуют выводы,
			конкретизация и доказательность
			изложения. Речь неграмотная.
			Дополнительные и уточняющие
			вопросы преподавателя не приводят
			к коррекции ответа студента не
			только на поставленный вопрос, но
			и на другие вопросы дисциплины. 0
			баллов выставляется студенту при
			полном отсутствии ответа,
			имеющего отношение к вопросу.
			- Established Resiposj.

	i	
		8 баллов заслуживает студент,
		ответивший полностью и без
		ошибок на предложенные вопросы
		и показавший знания основных
		понятий дисциплины в
		соответствии с обязательной
		программой курса и
		рекомендованной основной
		литературой. 6 баллов дан
		недостаточно полный и
		недостаточно развернутый ответ.
		Логика и последовательность
		изложения имеют нарушения.
		Допущены ошибки в раскрытии
		понятий, употреблении терминов.
		Студент не способен
		самостоятельно выделить
		существенные и несущественные
		признаки и причинно-следственные
		связи. Студент может
	Коллоквиум	конкретизировать обобщенные
		знания, доказав на примерах их
KT 2		8 основные положения только с
		помощью преподавателя. Речевое
		оформление требует поправок, коррекции. 4 балла дан неполный
		ответ, представляющий собой
		разрозненные знания по теме вопроса с существенными
		ошибками в определениях.
		Присутствуют фрагментарность,
		нелогичность изложения. Студент
		не осознает связь данного понятия,
		теории, явления с другими
		объектами дисциплины.
		Отсутствуют выводы,
		конкретизация и доказательность
		изложения. Речь неграмотная.
		Дополнительные и уточняющие
		вопросы преподавателя не приводят
		к коррекции ответа студента не
		только на поставленный вопрос, но
		и на другие вопросы дисциплины. 0
		баллов выставляется студенту при
		полном отсутствии ответа,
		имеющего отношение к вопросу.
<u> </u>		minima i bompoey.

			T
			7 баллов заслуживает студент,
			ответивший полностью и без
			ошибок на предложенные вопросы
			и показавший знания основных
			понятий дисциплины в
			соответствии с обязательной
			программой курса и
			рекомендованной основной
			литературой. 2 балла дан
			недостаточно полный и
			недостаточно развернутый ответ.
			Логика и последовательность
			изложения имеют нарушения.
			Допущены ошибки в раскрытии
			понятий, употреблении терминов.
			Студент не способен
			самостоятельно выделить
			существенные и несущественные
			признаки и причинно-следственные
			связи. Студент может
			конкретизировать обобщенные
	Проделино описитировании из		знания, доказав на примерах их
KT 2	Практико-ориентированные задачи и ситуационные	7	основные положения только с
K1 Z	задачи и ситуационные задачи	,	помощью преподавателя. Речевое
	задачи		оформление требует поправок,
			коррекции. 1 балл дан неполный
			ответ, представляющий собой
			разрозненные знания по теме
			вопроса с существенными
			ошибками в определениях.
			Присутствуют фрагментарность,
			нелогичность изложения. Студент
			не осознает связь данного понятия,
			теории, явления с другими
			объектами дисциплины.
			Отсутствуют выводы,
			конкретизация и доказательность
			изложения. Речь неграмотная.
			Дополнительные и уточняющие
			вопросы преподавателя не приводят
			к коррекции ответа студента не
			только на поставленный вопрос, но
			и на другие вопросы дисциплины. 0
			баллов выставляется студенту при
			полном отсутствии ответа,
			имеющего отношение к вопросу.
			1 7

Критерии и шкалы оценивания результатов обучения на промежуточной аттестации

При проведении итоговой аттестации «зачет» («дифференцированный зачет», «экзамен») преподавателю с согласия студента разрешается выставлять оценки («отлично», «хорошо», «удовлетворительно», «зачет») по результатам набранных баллов в ходе текущего контроля успеваемости в семестре по выше приведенной шкале.

В случае отказа – студент сдает зачет (дифференцированный зачет, экзамен) по приведенным выше вопросам и заданиям. Итоговая успеваемость (зачет, дифференцированный зачет, экзамен) не может оцениваться ниже суммы баллов, которую студент набрал по итогам текущей и промежуточной успеваемости.

При сдаче (зачета, дифференцированного зачета, экзамена) к заработанным в течение семестра студентом баллам прибавляются баллы, полученные на (зачете, дифференцированном зачете, экзамене) и сумма баллов переводится в оценку.

Критерии и шкалы оценивания ответа на экзамене

Сдача экзамена может добавить к текущей балльно-рейтинговой оценке студентов не более 20 баллов:

Содержание билета	Количество баллов
Теоретический вопрос №1	до 7
Теоретический вопрос №2	до 7
Задача (оценка умений и	до 6
Итого	20

Критерии оценки ответа на экзамене

Теоретические вопросы (вопрос 1, вопрос 2)

- 7 баллов выставляется студенту, полностью освоившему материал дисциплины или курса в соответствии с учебной программой, включая вопросы рассматриваемые в рекомендованной программой дополнительной справочно-нормативной и научно-технической литературы, свободно владеющему основными понятиями дисциплины. Требуется полное понимание и четкость изложения ответов по экзаменационному заданию (билету) и дополнительным вопросам, заданных экзаменатором. Дополнительные вопросы, как правило, должны относиться к материалу дисциплины или курса, не отраженному в основном экзаменационном задании (билете) и выявляют полноту знаний студента по дисциплине.
- 5 балла заслуживает студент, ответивший полностью и без ошибок на вопросы экзаменационного задания и показавший знания основных понятий дисциплины в соответствии с обязательной программой курса и рекомендованной основной литературой.
- 3 балла дан недостаточно полный и недостаточно развернутый ответ. Логика и последовательность изложения имеют нарушения. Допущены ошибки в раскрытии понятий, употреблении терминов. Студент не способен самостоятельно выделить существенные и несущественные признаки и причинно-следственные связи. Студент может конкретизировать обобщенные знания, доказав на примерах их основные положения только с помощью преподавателя. Речевое оформление требует поправок, коррекции.
- 2 балла дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками в определениях. Присутствуют фрагментарность, нелогичность изложения. Студент не осознает связь данного понятия, теории, явления с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения. Речь неграмотная. Дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ответа студента не только на поставленный вопрос, но и на другие вопросы дисциплины.
- 1 балл дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками в определениях. Присутствуют фрагментарность, нелогичность изложения. Студент не осознает связь данного понятия, теории, явления с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения. Речь неграмотная. Дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ответа студента не только на поставленный вопрос, но и на другие вопросы дисциплины.

0 баллов - при полном отсутствии ответа, имеющего отношение к вопросу.

Оценивание задачи

- 6 баллов Задачи решены в полном объеме с соблюдением необходимой последовательности.
- 5 баппов
- 4 балла Задачи решены с небольшими недочетами.
- 3 балла
- 2 балла Задачи решены не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы.
- 1 баллов Задачи решены частично, с большим количеством вычислительных ошибок, объем выполненной части работы не позволяет сделать правильных выводов.
- 0 баллов Задачи не решены или работа выполнена не полностью, и объем выполненной части работы не позволяет сделать правильных выводов.

Перевод рейтинговых баллов в пятибалльную систему оценки знаний обучающихся: для экзамена:

- «отлично» от 89 до 100 баллов теоретическое содержание курса освоено полностью, без пробелов необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному;
- «хорошо» от 77 до 88 баллов теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками;
- «удовлетворительно» от 65 до 76 баллов теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки;
- «неудовлетворительно» от 0 до 64 баллов теоретическое содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки, дополнительная самостоятельная работа над материалом курса не приведет к существенному повышению качества выполнения учебных заданий

7.3. Примерные оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины «Инструментальные методы исследований»

Вопросы для подготовки к экзамену

- 1. Дайте определение инструментальным методам анализа и их роль в современных исследованиях.
 - 2. Классификация инструментальных методов по характеру измеряемого сигнала.
 - 3. Понятие чувствительности, селективности и предела обнаружения методов анализа.
- 4. Метрологические характеристики инструментальных методов: точность, прецизионность, воспроизводимость.
- 5. Основные этапы инструментального анализа: отбор проб, пробоподготовка, измерение, обработка результатов.
 - 6. Основы спектроскопии: виды энергий переходов, закон Бугера-Ламберта-Бера.
- 7. Принципы и аппаратура молекулярной абсорбционной спектроскопии (УФ-видимая спектроскопия).
- 8. Количественный анализ в УФ-видимой спектроскопии: методы градуировочного графика и стандартов.
- 9. Флуориметрия: принцип, аппаратура, преимущества перед абсорбционной спектроскопией.
 - 10. Атомно-абсорбционная спектроскопия: принцип, аппаратура, области применения.
 - 11. Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой (ICP-AES).
 - 12. Инфракрасная спектроскопия: принцип, колебания молекул, интерпретация спектров.
 - 13. Спектроскопия ядерного магнитного резонанса (ЯМР): основные принципы и

информативность.

- 14. Принципы хроматографии: классификация методов, основные параметры.
- 15. Теория хроматографического процесса: концепция теоретических тарелок.
- 16. Газовая хроматография: аппаратура, особенности подготовки проб.
- 17. Детекторы в газовой хроматографии: пламенно-ионизационный, электронно-захватный.
- 18. Высокоэффективная жидкостная хроматография (ВЭЖХ): преимущества, основные компоненты системы.
 - 19. Оптимизация разделения в ВЭЖХ: выбор фазы, градиентный элюент.
 - 20. Ионообменная хроматография: принцип, области применения.
 - 21. Тонкослойная хроматография: методика, особенности количественного анализа.
 - 22. Классификация электрохимических методов анализа.
 - 23. Потенциометрия: принцип, ионоселективные электроды, рН-метрия.
 - 24. Вольтамперометрия: принцип, виды, аналитические возможности.
 - 25. Кулонометрия: принципы методов, области применения.
 - 26. Кондуктометрия: принципы, применение в анализе.
 - 27. Принципы масс-спектрометрии: ионизация, разделение ионов, детектирование.
 - 28. Методы ионизации в масс-спектрометрии (EI, CI, ESI, MALDI).
 - 29. Хромато-масс-спектрометрия: сочетание ГХ/ЖХ и МС.
 - 30. Интерпретация масс-спектров: молекулярный ион, фрагментация.
 - 31. Термогравиметрический анализ (ТГА): принцип, интерпретация кривых.
 - 32. Дифференциально-сканирующая калориметрия (ДСК): принцип, применение.
 - 33. Капиллярный электрофорез: принцип, преимущества, области применения.
 - 34. Рентгенофлуоресцентный анализ: принципы, возможности.
 - 35. Методы анализа поверхности: РФЭС, АСМ.
 - 36. Автоматизация инструментального анализа: системы пробоподготовки и анализа.
 - 37. Выбор метода анализа для решения конкретной аналитической задачи.
 - 38. Валидация методик инструментального анализа.
 - 39. Статистическая обработка результатов инструментальных измерений.
 - 40. Современные тенденции развития инструментальных методов анализа.

Темы рефератов по теме 2

- 1. Плодородие почвы, его виды. Пути повышения эффективного плодородия.
- 2. Потенциальное и эффективное плодородие почв. Основные приемы повышения эффективного плодородия почв.
 - 3. Составные части почвы и их роль в питании растений.
 - 4. Емкость поглощения и состав поглощенных катионов почв.
- 5. Реакция почвенного раствора. Виды кислотности. Роль разных видов кислотности почв в питании растений.
 - 6. Что такое буферность и какова ее роль в питании растений и применении удобрений.
 - 7. Агрофизические, биологические и агрохимические показатели плодородия.
 - 8. Дайте определение нитрификационной способности почвы.
- 9. Источники поступления и потерь азота из почвы. Усвоение растениями аммиачного и нитратного азота.
- 10. Круговорот азота в природе. Мероприятия по улучшению азотного баланса в земледелии.
 - 11. От каких факторов зависит скорость нитрификации?
 - 12. Содержание и формы фосфора в почве.
 - 13. Содержание и формы калия в почве.
 - 14. Как определить удобрения, содержащие аммиак?
 - 15. Микроудобрения, их характеристика, особенности применения
 - 16. Основные микроудобрения свойства и условия эффективного применения.
 - 17. Понятие о комплексных удобрениях. Их экономическое и агротехническое значение.

Вопросы для устного опроса по теме 1

Какие основные физические параметры среды обитания растений подлежат инструментальной диагностике и каково их физиологическое значение?

Какими приборами измеряют интенсивность фотосинтетически активной радиации (ФАР) и

как интерпретировать полученные данные?

Опишите принцип работы и порядок применения тензиометра для определения влажности почвы. Каковы его преимущества и ограничения?

Как с помощью портативного термогигрометра проводится оценка температурновлажностного режима приземного слоя воздуха и каковы агротехнические последствия его нарушения?

Какими методами и приборами определяют плотность сложения почвы и почему этот показатель важен для роста корневой системы?

Для чего используется портативный рН-метр и кондуктометр при диагностике почвенной среды? Как их показания связаны с доступностью элементов питания?

Опишите технологию работы с портативной метеостанцией. Какие параметры она позволяет отслеживать в динамике и как это используется в точном земледелии?

Какие инструментальные методы применяются для оценки температурного стресса у растений в полевых условиях?

Как с помощью инфракрасного термометра оценивают водный стресс растений и каковы принципы интерпретации данных?

В чем заключаются преимущества и ограничения современных портативных приборов для диагностики физических условий среды по сравнению с лабораторными методами?

Практико-ориентированные задачи и ситуационные задачи 1

Задача 1: Расчет освещенности для зимней теплицы

Ситуация: Вы агроном тепличного комбината. В январе салаты вытягиваются, имеют бледную окраску. В 12:00 дня в ясную погоду вы измерили освещенность на уровне макушек растений люксметром. Показание составило 15 000 люкс.

Вопросы:

Достаточна ли эта освещенность для салата, если известно, что оптимальный уровень ΦAP для него составляет 250 Bt/м²? Вспомните, что для приблизительного пересчета: 1 Bt/м² $\Phi AP \approx 20$ 000 люкс (для дневного света).

Рассчитайте, какую долю от оптимальной составляет текущая освещенность.

Предложите технологические мероприятия для решения проблемы.

Решение:

Переводим люксы в BT/M^2 ФАР: 15 000 люкс / 20 000 (люкс/(BT/M^2)) = 0.75 BT/M^2 ФАР.

Сравниваем с оптимумом: (0.75 / 250) * 100% = 0.3%. Это критически низкий уровень.

Мероприятия: Установка системы досвечивания фитолампами, очистка кровли теплицы, сокращение расстояния между лампами и растениями.

Задача 2: Анализ поливного режима с помощью тензиометров

Ситуация: В яблоневом саду установлены тензиометры. Полив рекомендуется проводить при показании -50 сантибар. В 8:00 утра показание составило -30 сантибар. К 14:00 того же дня показание опустилось до -55 сантибар.

Вопросы:

В какое время суток необходимо включить полив? Почему показания прибора меняются в течение дня?

Рассчитайте, на сколько сантибар в час в среднем увеличивался водный дефицит в почве в этот период.

Если поливная система может подать нужный объем воды за 6 часов, не приведет ли это к переувлажнению к ночи?

Решение:

Полив нужно включить после 14:00. Показания меняются из-за расхода воды растениями на транспирацию, которая максимальна в дневные часы.

Скорость изменения: (-55 - (-30)) / (14-8) = -25 сантибар / 6 часов ≈ -4.2 сантибар/час.

Риск есть. Необходимо рассчитать поливную норму так, чтобы к утру следующего дня влажность достигла оптимального уровня, но не превысила его. Возможно, потребуется дробный полив.

Задача 3: Диагностика водного стресса у винограда

Ситуация: Вы проводите мониторинг виноградника с помощью портативного инфракрасного термометра. Температура листовой поверхности здорового, хорошо поливаемого

винограда (базисный показатель) составляет $+28^{\circ}$ C при температуре воздуха $+30^{\circ}$ C. На пробном участке вы обнаружили растения, температура листьев которых составляет $+34^{\circ}$ C.

Вопросы:

О чем свидетельствует повышенная температура листьев? Рассчитайте разницу между температурой листа и воздуха для двух случаев.

Как называется этот метод диагностики?

Какие срочные агротехнические мероприятия вы предложите?

Решение:

Повышенная температура свидетельствует о водном стрессе. Растение закрывает устьица, прекращая транспирацию, что приводит к перегреву.

Здоровое растение: $+28^{\circ}\text{C} - +30^{\circ}\text{C} = -2^{\circ}\text{C}$ (лист холоднее воздуха за счет испарения).

Больное растение: $+34^{\circ}$ C - $+30^{\circ}$ C = $+4^{\circ}$ C (лист горячее воздуха).

Это метод оценки индекса стресса культур (CWSI).

Мероприятия: Срочный полив, мульчирование для сохранения влаги, оценка работы системы орошения на этом участке.

Ситуационные задачи (для анализа и принятия решений)

Ситуация 1: «Проблема в питомнике»

Сценарий: В питомнике декоративных растений на одном участке молодые саженцы туи явно отстают в росте, хвоя имеет желтоватый оттенок. На другом участке, с тем же сортом и агротехникой, растения развиваются нормально. В вашем распоряжении есть портативный комплект: рН-метр, кондуктометр (TDS-метр), термогигрометр, тензиометр.

Ваши действия:

Составьте программу обследования обоих участков. Какие параметры и в какой последовательности вы измерите в первую очередь и почему?

Предположите 3 наиболее вероятные причины проблемы, основанные на возможных результатах измерений.

Какое экспресс-решение вы можете предложить, пока готовятся результаты лабораторного анализа почвы?

Ожидаемые ответы:

Программа: 1) Влажность почвы (тензиометр) — исключаем дефицит/перелив. 2) рН и электропроводность (ЕС) почвенного раствора — проверяем кислотность и засоленность. 3) Температура и влажность воздуха — оцениваем микроклимат.

Возможные причины:

Низкий/высокий рН: Недоступность элементов питания (железа, марганца) при высоком рН вызывает хлороз.

Высокая засоленность (ЕС): Токсическое действие солей, осмотический стресс.

Локальное переувлажнение: Застой воды и недостаток кислорода у корней из-за нарушения дренажа.

Решение: В зависимости от результатов: при низком pH — внекорневая подкормка хелатом железа; при высокой EC — промывной полив; при переувлажнении — аэрация почвы.

Ситуация 2: «Выбор участка под закладку интенсивного сада»

Сценарий: Ваше предприятие планирует закладку интенсивного яблоневого сада. Вам предоставили два участка. Задача — провести предпроектную инструментальную диагностику и дать рекомендации.

Участок А: Ровный, с глубокими плодородными почвами.

Участок Б: Слабый склон южной экспозиции, почвы более легкие.

Ваши действия:

Какой набор приборов вы возьмете для полевого обследования и почему?

Для каждого участка спрогнозируйте основные риски, которые можно выявить с помощью инструментов.

Какой участок вы порекомендуете и какие дополнительные мелиоративные мероприятия предложите для минимизации рисков на выбранном участке?

Ожидаемые ответы:

Набор приборов: Пенетрометр (плотность почвы), бур + тензиометры/датчики влажности (водный режим), термометр/логтер температуры почвы и воздуха (риск заморозков), инфракрасный термометр (оценка температурного режима склона).

Риски:

Участок А: Риск верховодки и переувлажнения, застоя холодного воздуха (заморозки).

Участок Б: Риск водной эрозии, быстрого иссушения почвы, зимнего повреждения корней из-за малой теплоемкости легких почв, более сильные температурные перепады.

Рекомендация: Часто выбирают ровный участок A как менее рискованный. Мероприятия: Обязательное проектирование дренажной системы, закладка ветроломных полос, установка системы мониторинга влажности почвы.

Эти задачи учат не просто пользоваться приборами, а интегрировать их данные в систему принятия агротехнических решений, что является ключевым навыком современного специалиста.

Вопросы для круглого стола по теме 1

Как интеграция данных от различных датчиков (влажность, температура, освещенность) позволяет построить точную цифровую модель среды обитания растений?

Каковы основные экономические и технические барьеры массового внедрения систем точного земледелия на основе инструментальной диагностики в средних и малых хозяйствах?

Как совместный анализ данных диагностики физических условий и мониторинга физиологического состояния растений (хлорофиллометрия, флуориметрия) повышает эффективность принятия агротехнических решений?

В чем заключаются основные преимущества и ограничения стационарных систем мониторинга по сравнению с портативными приборами для оперативной диагностики?

Как данные инструментальной диагностики могут быть использованы для валидации и калибровки математических моделей роста и развития сельскохозяйственных культур?

Какие новые перспективы в диагностике физических условий среды открывают технологии дистанционного зондирования (БПЛА, спутники) и интернета вещей (IoT)?

Насколько существующие приборы и методики адаптированы для диагностики специфических условий в защищенном грунте (теплицы, фитотроны)?

Как следует интерпретировать противоречивые показания разных приборов (например, данные тензиометра и влагомера) на одном объекте?

Какие параметры физической среды являются наиболее критичными для управления продукционным процессом в различных экосистемах (агроценозы, лесные питомники, городские насаждения)?

Каким образом современная инструментальная диагностика трансформирует традиционные подходы к нормированию факторов жизни растений и разработке агротехнологий?

Вопросы для собеседования по теме 3

- 1. Формы калия в почве
- 2. Методы определения калия в почве.
- 3. Что такое макроэлементы.
- 4. Что такое микроэлементы
- 5. Определение гумуса. Составные части гумуса
- 6. Методы определения органического вещества почвы.

Контрольная точка 1

Коллоквиум

Современные подходы к пробоподготовке растительного материала для биохимического анализа

Методы количественного определения фотосинтетических пигментов (хлорофиллы, каротиноиды) и их диагностическая ценность

Спектрофотометрические методы определения содержания белков в растительных тканях

Хроматографические методы анализа аминокислотного состава растений

Ферментативные методы оценки физиологического состояния растений

Биохимические методы определения активности антиоксидантных систем растений

Современные методы анализа липидного состава растительных тканей

Методы оценки минерального состава растений (азот, фосфор, калий, микроэлементы)

Химические методы анализа почвенного раствора и доступных форм элементов питания

Ионоселективные электроды в диагностике почвенной среды

Вопросы для устного опроса

Каковы основные этапы подготовки растительных образцов для биохимического анализа?

Как определяется содержание хлорофиллов и каротиноидов в листьях спектрофотометрическим методом?

В чем заключается метод Бредфорда для количественного определения белка?

Как работает тонкослойная хроматография для разделения вторичных метаболитов растений?

Какие методы используются для определения минеральных элементов в растительных тканях?

Как проводится анализ почвенного раствора на содержание доступных форм азота, фосфора и калия?

В чем преимущества ВЭЖХ для анализа фитогормонов по сравнению с другими методами?

Как определяют активность антиоксидантных ферментов (пероксидазы, каталазы) в растительных тканях?

Какие биохимические маркеры используются для диагностики стресса у растений?

Как проводится хроматографический анализ аминокислотного состава растений?

Примеры практико-ориентированных задач и ситуационных задач

Задача 1. Диагностика минерального питания томатов в теплице

Ситуация: В тепличном хозяйстве у томатов появились симптомы: пожелтение нижних листьев, скручивание молодых листьев, некроз по краям листовых пластинок.

Задание:

Разработайте программу биохимического и химического исследования растений и почвенного субстрата

Подберите методы анализа для определения:

Содержания азота, фосфора, калия в листьях

Концентрации микроэлементов (железо, марганец, бор)

Активности ферментов нитратредуктазы и пероксидазы

рН и электропроводности питательного раствора

Предложите схему отбора проб растений и субстрата

Контрольная точка 2

Коллоквиум

Современные методы идентификации фитопатогенов с использованием ПЦР-диагностики

Иммуноферментный анализ (ИФА) в диагностике вирусных и бактериальных заболеваний растений

Методы молекулярной детекции возбудителей болезней в почве и растительном материале

Инструментальные подходы к оценке микробного разнообразия ризосферы

Методы количественной оценки энтомофауны в агроценозах

Современные системы мониторинга вредителей с использованием феромонных и цветных ловушек

Спектральные методы ранней диагностики биотического стресса у растений

Микроскопические методы исследования фитопатогенов и вредителей

Биолюминесцентные методы оценки микробиологической активности почвы

Методы ДНК-баркодирования для идентификации видов-вредителей

Вопросы для устного опроса

Как проводится ПЦР-диагностика бактериальных заболеваний растений?

Каков принцип работы иммуноферментного анализа (ИФА) при диагностике вирусных инфекций растений?

Какие инструментальные методы применяются для количественной оценки нематод в ризосфере?

Как с помощью ДНК-баркодирования идентифицируют видовой состав почвенных микроорганизмов?

Какие приборы используются для отбора и анализа почвенных проб на наличие фитопатогенов?

Как проводится микроскопический анализ микоризных грибов в корневой системе?

Какие методы применяются для оценки активности почвенных ферментов?

Как с помощью спектрального анализа выявляют ранние стадии поражения растений вредителями?

Какие инструментальные подходы используются для мониторинга популяций насекомых-вредителей?

Примеры практико-ориентированных задач и ситуационных задач

Практико-ориентированная задача:

Диагностика фитопатогенов в тепличном хозяйстве

В тепличном комбинате у томатов обнаружены симптомы: пятнистость листьев, некроз стеблей и увядание. Необходимо:

Провести отбор проб растений и почвы для анализа.

Использовать методы ПЦР и ИФА для идентификации возбудителя (например, Fusarium oxysporum или Phytophthora infestans).

Оценить микробиологическую активность почвы (посев на питательные среды, анализ ферментативной активности).

Предложить меры по оздоровлению фитосанитарной обстановки.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

основная

- Л1.1 Семендяева Н. В., Галеева Л. П., Мармулев А. Н. Инструментальные методы исследования почв и растений [Электронный ресурс]:учеб.-метод. пособие; ВО Магистратура. Новосибирск: НГАУ, 2013. 116 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=44515
- Л1.2 Кидин В. В. Агрохимия [Электронный ресурс]:учеб. пособие; ВО Бакалавриат. Москва: ООО "Научно-издательский центр ИНФРА-М", 2015. 351 с. Режим доступа: http://new.znanium.com/go.php?id=465823
- Л1.3 Мамонтов В. Г. Методы почвенных исследований [Электронный ресурс]:учебник ; ВО Бакалавриат. Санкт-Петербург: Лань, 2021. 260 с. Режим доступа: https://e.lanbook.com/book/152448
- Π 1.4 Романов Г. Г., Елькина Г. Я., Юдин А. А., Чеботарев Н. Т. Агрохимия [Электронный ресурс]:учеб. пособие для СПО. Санкт-Петербург: Лань, 2021. 148 с. Режим доступа: https://e.lanbook.com/book/159494
- Л1.5 Ягодин Б. А., Жуков Ю. П., Кобзаренко В. И. Агрохимия [Электронный ресурс]:учебник; ВО Бакалавриат, Магистратура. Санкт-Петербург: Лань, 2021. 584 с. Режим доступа: https://e.lanbook.com/book/168987
- Л1.6 Ягодин Б. А., Жуков Ю. П., Кобзаренко В. И. Агрохимия [Электронный ресурс]:учебник; ВО Бакалавриат, Магистратура. Санкт-Петербург: Лань, 2021. 584 с. Режим доступа: https://e.lanbook.com/book/176891
- Л1.7 Глухих М. А. Агрохимия [Электронный ресурс]:Учебное пособие; ВО Бакалавриат. Санкт-Петербург: Лань, 2022. 120 с. Режим доступа: https://e.lanbook.com/book/193260
- Π 1.8 Романов Г. Г., Елькина Г. Я., Юдин А. А., Чеботарев Н. Т. Агрохимия [Электронный ресурс]:учеб. пособие; ВО Бакалавриат. Санкт-Петербург: Лань, 2022. 148 с. Режим доступа: https://e.lanbook.com/book/200495

дополнительная

- Л2.1 Семендяева Н. В., Мармулев. А. Н., Добротворская Н. И. Методы исследования почв и почвенного покрова [Электронный ресурс]:учеб. пособие ; ВО Бакалавриат, Магистратура. Новосибирск: НГАУ, 2011. 202 с. Режим доступа: http://e.lanbook.com/books/element.php? pl1 cid=25&pl1 id=4578
- б) Методические материалы, разработанные преподавателями кафедры по дисциплине, в соответствии с профилем ОП.

ЛЗ.1 С. А. Коростылев, Е. А. Устименко, Е. В. Голосной, А. Н. Есаулко, В. В. Агеев, М. С. Сигида, О. Ю. Лобанкова, Ю. И. Гречишкина, А. А. Беловолова, А. В. Воскобойников, Н. В. Громова, А. Ю. Ожередова; Ставропольский ГАУ Инструментальные методы исследований: учеб. пособие. - Ставрополь: АГРУС, 2021. - 3,13 МБ

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

No	Наименование ресурса сети «Интернет»	Электронный адрес ресурса
1	Электронная библиотека диссертаций Российской государственной библиотеки	http://elibrary.rsl./ru
2	Международная реферативная база данных SCOPUS	.http://www.scopus.com/
3	Международная реферативная база данных Web of Science.	http://wokinfo.com/Russian/

10. Методические указания для обучающихся по освоению дисциплины

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Кафедра агрохимии и физиологии растений

ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЙ

Методические указания по выполнению практических занятий для магистров высших учебных заведений по направлению 35.04.04 «Агрономия» и учебного плана по магистерской программе «Агрохимические основы управления питанием растений и плодородием почвы», «Ресурсосберегающие технологии в адаптивно-ландшафтном земледелии», «Селекция и семеноводство сельскохозяйственных культур» и «Экологически безопасные технологии защиты растений» по дисциплине: «Инструментальные методы исследований»

Ставрополь «АГРУС» 2020

Авторский коллектив:

Коростылев С.А. - к.с.-х.н., доцент; Устименко Е.А. - к.с.-х.н., доцент; Есаулко А.Н. –д.с.-х.н., профессор РАН; Агеев В.В. - д.с.-х.н., профессор; Голосной Е.В. – к с.-х. н., доцент; Сигида М.С., к.с.-х. н., доцент; Лобанкова О.Ю. - к.б.н., доцент; Гречишкина Ю.И. - к.с.-х.н., доцент; Беловолова А.А. - к.с.-х.н., доцент; Воскобойников А.В. - к.с.-х.н., доцент; Подколзин А.И. - д.б.н., профессор; Сычёв В.Г. – д.с.-х.н., профессор; Куценко А.А. - к.с.-х.н., доцент; Громова Н.В. – ст. преподаватель; Ожередова А.Ю. – ст. преподаватель

Рецензенты:

доктор сельскохозяйственных наук, профессор В.С. Цховребов; доктор сельскохозяйственных наук, доцент О.И. Власова

Инструментальные методы исследований: Методические указания / Сост. Коростылёв С.А., Устименко Е.А., Есаулко А.Н., Агеев В.В., Голосной Е.В., Сигида М.С., Лобанкова О.Ю., Гречишкина Ю.И., Беловолова А.А., Воскобойников А.В., Подколзин А.И., Сычёв В.Г., Куценко А.А., Громова Н.В., Ожередова, А.Ю., – Ставрополь : АГРУС Ставропольского гос.аграрного унта, 2020.-53 с.

Методические указания составлены на основе ФГОС и учебного плана по направлению 35.04.04 «Агрономия» и учебного плана по магистерской программе «Агрохимические основы управления питанием растений и плодородием почвы», «Ресурсосберегающие технологии в адаптивно-ландшафтном земледелии», «Селекция и семеноводство сельскохозяйственных культур» и «Экологически безопасные технологии защиты растений» по дисциплине: «Инструментальные методы исследований Предназначены для магистров всех форм обучения.

ФГБОУ ВО Ставропольский государственный аграрный университет, 2020 СОДЕРЖАНИЕ

ВВЕДЕНИЕ 4

ЛАБОРАТОРНЫЕ ЗАНЯТИЯ

Правила техники безопасности при работе в лаборатории агрохимического анализа

- 1. АНАЛИЗ ПОЧВЫ
- 1.1. Правила отбора почвенных проб
- 1.2. Определение содержания обменного калия в почве в 1 %-ной углеаммонийной вытяжке с завершением на пламенном фотометре по методу Б.П. Мачигина в модификации ЦИНАО
 - 1.3. Определение макро и микроэлементов в растениях атомно-абсорбционным методом
- 1.4. Определение содержания органического вещества по методу Тюрина в модификации ЦИНАО (ГОСТ 26213) 6

6

9

9

13

41

КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ДИСЦИПЛИНЕ «ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЙ» 45

ВОПРОСЫ К ЭКЗАМЕНУ ПО ДИСЦИПЛИНЕ «ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЙ»

ПРИМЕРНАЯ ТЕМАТИКА ДОКЛАДОВ, СТАТЕЙ ПО ДИСЦИПЛИНЕ «ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЙ»

ПРИМЕРНАЯ ТЕМАТИКА РЕФЕРАТОВ ПО ДИСЦИПЛИНЕ «ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЙ»

46

48

49

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА 51

ВВЕДЕНИЕ

Процесс изучения дисциплины и разработанные на основе рабочей программы методические указания направлены на формирование знаний, умений, навыков, являющихся компонентами соответствующих профессиональных компетенций в соответствии с ФГОС ВО по данному направлению:

- способностью к профессиональной эксплуатации современного оборудования и приборов (OK-7);
- способностью обосновать задачи исследования, выбрать методы экспериментальной работы, интерпретировать и представить результаты научных экспериментов (ПК-2);
- способностью самостоятельно организовать и провести научные исследования с использованием современных методов анализа почвенных и растительных образцов (ПК-3).

По окончании изучения дисциплины студент должен знать:

- основы профессиональной эксплуатации современного оборудования и приборо;
- основы постановки задач исследования, методы экспериментальной работы и предоставления результатов научных экспериментов;
- основы самостоятельной организации и проведения научных исследований с использованием современных методов анализа почвенных и растительных образцов.

Уметь:

- профессионально пользоваться современным оборудованием и приборами;
- обосновать задачи исследования, выбрать методы экспериментальной работы, интерпретировать и представить результаты научных экспериментов;
- самостоятельно организовать и проводить научные исследования с использованием современных методов анализа почвенных и растительных образцов.

Владеть:

- навыками профессиональной эксплуатации современного оборудования и приборов;

- навыками обоснования задач исследования, выбора методов экспериментальной работы, интерпретации и предоставления результатов научных экспериментов;
- навыками самостоятельной организации и проведения научных исследований с использованием современных методов анализа почвенных и растительных образцов.

Учебное пособие составлено в соответствии с рабочей программой дисциплины «Инструментальные методы исследований» для обучающихся по направлению подготовки 35.04.04 «Агрономия» и учебного плана по магистерской программе «Агрохимические основы управления питанием растений и плодородием почвы», «Ресурсосберегающие технологии в адаптивноландшафтном земледелии», «Селекция и семеноводство сельскохозяйственных культур» и «Экологически безопасные технологии защиты растений».

ЛАБОРАТОРНЫЕ ЗАНЯТИЯ

Правила техники безопасности при работе в лаборатории агрохимического анализа Противопожарные меры

Причинами возникновения пожара могут быть неисправности: электропроводки, нагревательных приборов, газовых шлангов, кранов подвода газа, несоблюдение предосторожности, неумелое обращение с огнеопасными веществами. При выполнении работ по нагреванию и работ с огнеопасными веществами запрещается:

- использовать неисправные электроприборы и приборы, несоответствующие напряжению сети;
- использование нагревательных приборов на рабочих местах без подкладки толстого листа асбеста или другого теплоизоляционного материала;
 - оставлять включенными без присмотра электрические и газовые приборы;
- при работе с огнеопасными веществами (серный эфир, спирт, бензин и другие) запрещается пользоваться горящими горелками всех видов. Все операции, связанные с нагреванием, следует производить на водяной или другой бане с потушенной горелкой.

В случае если будет нечаянно разбита бутыль или дугой сосуд с огнеопасными веществами, прежде чем собирать осколки или разлитую жидкость, её нужно засыпать песком. Осколки стекла и песок, пропитанный жидкостью, собирают при помощи фанеры (или деревянной лопаты). Запрещается применять железную лопату, веник или щетку.

При возникновении пожара следует очень быстро удалить из помещения все горючие жидкости, кроме того, надо предусмотреть, чтобы находящиеся вблизи стальные баллоны не взорвались от разогрева. Для огнетушения использовать все имеющиеся под рукой средства (СО2 из остальных баллонов, огнетушители, листовой асбест, влажные тряпки) и одновременно вызвать пожарную команду.

Меры предосторожности при работе с вредными и ядовитыми веществами, кислотами, щелочами и при обращении со стеклом

В лаборатории приходится иметь дело с кислотами, щелочами, с солями, содержащими ртуть, свинец и другими веществами, вредно действующими на организм человека при их вдыхании, а также при попадании на кожу или внутрь.

В целях предупреждения несчастных случаев необходимо знать:

- 1. Работы, связанные с выпариванием, удалением аммиака, сжиганием испытываемых веществ (озоление), должны проводиться только в вытяжном шкафу при хорошо действующей тяге.
- 2. Наполнение пипеток ядовитыми или едкими жидкостями ни в коем случае нельзя производить ртом следует применять грушу или бюретку.
- 3. При работе со щелочами, а также с ядовитыми веществами (сулема и другие) недопустимо брать куски или порошок голыми, не защищенными руками. Для этого необходимо пользоваться щипцами, пинцетом или совочком.
- 4. При смешивании жидкостей, взаимодействие которых вызывает сильное разогревание, необходимо соблюдать осторожность, так как раствор может закипеть и разбрызгаться. Например, при разведении концентрированной серной кислоты следует приливать кислоту в воду (а не

наоборот) небольшими порциями и постоянно помешивая, избегая чрезмерного нагревания.

- 5. При определении запаха вещества нельзя подносить к носу сосуд с веществом его следует держать на расстоянии, направляя к носу небольшое количество паров вещества легким движением руки.
- 6. Запрещается выливать ядовитые вещества в раковину без предварительного их обезвреживания. Нельзя также выливать концентрированные растворы щелочей, хромовую смесь, а также дурно пахнущие вещества, без предварительного их сильного разбавления.
- 7. Запрещается при работе держать или встряхивать колбы и другие склянки с кислотами и щелочами выше или на уровне глаз.
- 8. Чтобы предохранить руки от порезов, надо осторожно обращаться со стеклянными приборами и посудой. Закрывать колбы пробками не применяя больших усилий. При сборке приборов пользоваться стеклянными трубками с оплавленными концами.
- 9. Работать в агрохимических лабораториях нужно в халатах, так как попавшие реактивы могут загрязнить платье или разрушить ткань.

Первая помощь при несчастных случаях

- 1. При механическом ранении небольшие раны дезинфицируют небольшим количеством раствора йода и закрывают бинтом. Большие раны не промывают, а только забинтовывают стерильной марлей, ватой и бинтом, после чего прибегают к срочной медицинской помощи.
- 2. При ожогах пораженное место обрабатывают депантенолом. Если появились волдыри, следует прибегнуть к медпомощи, приставшие остатки вещества удалять нельзя.
- 3. При попадании концентрированной кислоты на кожу рук или лица необходимо промыть пораженный участок кожи сначала водой, а затем слабым раствором питьевой соды. Концентрированную щелочь, попавшую на кожу, смывают вначале слабым раствором уксусной кислоты, а затем водой, накладывается повязка с мазью от ожогов.
- 4. При попадании кислот, щелочей через ротовую полость необходимо тотчас же вызвать рвоту лучше всего механически или принимая внутрь мыльную пену или горчичную воду. После чего пострадавшему дают активированный уголь, молоко, в крайнем случае в большом количестве воду.
- 5. При отравлении газами (CO, H2S), парами растворителя пострадавшего выводят на свежий воздух. Нельзя допускать, чтобы человек заснул, для этого его лицо опрыскивают холодной водой, при остановке дыхания применяют искусственное дыхание.

В лаборатории агрохимического анализа на видном месте должна находиться аптечка для оказания первой помощи пострадавшим.

1. АНАЛИЗ ПОЧВЫ

1.1. Правила отбора почвенных проб

Взятие почвенных образцов в поле и подготовка их к анализу

Взятие почвенных образцов в поле – очень ответственная часть работы по составлению агрохимических картограмм. Если не обеспечить правильного взятия образцов, то последующие анализы почв будут в значительной мере обесценены.

Данные массовых анализов распространяются на определенную площадь. Поэтому почвенный образец должен быть типичен для всего пахотного слоя характеризуемой площади или, по крайней мере, преобладающей ее части. Учитывая неоднородность территории, принять брать смешанные образцы. Их составляют из «индивидуальных» проб, взятых в различных точках характеризуемой площади.

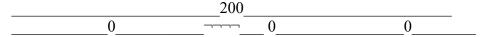
Почвенные образцы берут в продолжение 1,5-2 месяцев весной (до внесения удобрений и до посева) и в продолжение 1,5-2 месяцев осенью (сразу же после уборки урожая).

Образцы почв на пашне берут с глубины пахотного слоя (обычно 0-20 см). Из подпахотных горизонтов образцы почв берутся на орошаемых землях, а также при сильной пестроте почвенного профиля (близкое залегание карбонатов, гипса, растворимых солей и т.д.). На полях с плантажной вспашкой (например, под сады, виноградники) берут два (три) образца: на глубину 15-25 см из слоя систематической обработки и внесения удобрений и на глубину 20-40 и 40-70 см.

Количество образцов из подпахотных горизонтов не должно превышать 15% от количества образцов из пахотного слоя, иначе это сильно замедлит сбор почвенных образцов.

На лугах и пастбищах образцы берут на глубину 15-116 см., т.е. из слоя наибольшей

биологической активности, и небольшое количество 10-15 % – на глубину 20-40 см.


Частота взятия смешанных почвенных образцов в зависимости от почвенных условий следующая:

- 1 категория один смешанный образец на 1-30 га берется в сельскохозяйственных районах лесной зоны (дерново-подзолистые и подзолистые почвы), а также в других районах с волнистым сильно расчлененным рельефом;
- 2 категория один смешанный образец на 3-6 га для лесостепных и степных районов с расчлененным рельефом;
- 3 категория один смешанный образец на 5-10 га для степных и сухостепных районов с равнинным или слаборасчлененным рельефом и однообразным почвенным покровом.

В условиях орошаемого земледелия смешанный образец берут с площади 2-3 га. В горных районах, где размер хозяйственных полей небольшой и велика комплексность почвы, почвенный образец отбирают с площади 0,5-3 га.

В настоящее время наиболее распространено взятие проб по маршрутной линии, проходящей по оси участка. При отборе смешанных образцов этим методом, поля разбиваются на прямоугольники, у которых короткие стороны равняются длине одной из сторон элементарного участка, а длинные — соответственно равны коротким границам поля. Посредине каждого прямоугольника прокладывается маршрутная линия (ход), в начале и конце которой ставятся двухмерные вешки. При длине маршрутного хода более 500 м ставятся дополнительно одна или две вешки в середине части хода.

В каждом прямоугольнике маршрутная линия делится на части, равные более длинной стороне элементарного участка (рис. 4.1.).

0 0 0 0

Рисунок 1. – Схема отбора смешанных почвенных образцов по маршрутным ходам:

0 - вехи;

- границы прямоугольников;
- маршрутные ходы.

Делением части маршрутной линии, равной по длине стороне элементарного участка, на число индивидуальных проб, из которых составляется один смешанный образец (например, 20), определяется расстояние между пунктами взятия проб, т.е. то расстояние, пройдя которое, нужно сделать «укол» буром.

Все пробы, взятые буром по маршрутной линии в пределах элементарного участка, ссыпаются в полотняный мешок и снабжаются этикеткой с номером, соответствующим номером элементарного участка на плане. При отборе образцов в дневнике делают записи о состоянии посевов, особенностях почвенного покрова и т.д.

При отборе образцов по маршрутным линиям следует избегать взятия индивидуальных проб, в местах резко отличающихся по почвенным свойствам и условиям залегания. Смешанный образец следует составлять из индивидуальных проб, взятых на преобладающей почвенной разности, не допуская смешивания с пробами почв, не имеющих значительного распространения на данной площади.

Контроль над проведением отбора почвенных образцов осуществляется руководителем оперативной группы путем повторного отбора почвенных образцов по маршрутным ходам почвоведа-агрохимика. Отобранные образцы шифруются. Сравнение результатов анализа этих образцов с результатами анализа образцов, отобранных ранее агрохимиком, является основным критерием для оценки качества выполнения этих работ.

Каждый смешанный образец снабжается этикеткой, на которой указывается: номер образца (образцы нумеруются в порядке очередности взятия -1, 2, 3 и т.д.), глубина взятия его (для

смешанного пишется «см», для индивидуального - глубина взятия его). Затем указывается название колхоза (совхоза), севооборот и номер поля, с.-х. культура, дата взятия и фамилия взявшего образец.

Подготовка образцов к анализу

Образцы почвы, отобранные в поле или в вегетационном домике, предварительно подсушивают на воздухе при комнатной температуре. Хранение сырых образцов ведет к значительным изменениям их свойств и состава, особенно в результате ферментативных и микробиологических процессов. Напротив, температурный перегрев сопровождается изменением подвижности и растворимости многих соединений.

Если образцов много, то проводится сушка в шкафах с принудительной вентиляцией при температуре не выше $40~{\rm OC}$.

Образцы регистрируют в специальной ведомости, в которой указывают, какие виды анализов будут выполняться.

Определение нитратов, нитритов, поглощенного аммония, водорастворимых форм калия, фосфора и т.п. проводится в день взятия образцов при их естественной влажности. Влажную почву просеивают через сито с диаметром отверстий 3 мм. Остальные определения проводятся в воздушно-сухих образцах.

Необходимо помнить, что ошибка представительности образца возрастает с ростом размера частиц и с уменьшением массы навески. Высокая степень измельчения почвы требуется, когда анализируемая навеска мала. Например, гумус определяют в навесках, масса которых составляет десятые доли грамма. Это связано с условиями проведения анализа. В то же время для определения обменной и гидролитической кислотности используют навески, масса которых составляет десятки граммов. Поэтому при определении гумуса аналитическую почвенную пробу принято измельчать таким образом , чтобы диаметр частиц не превышал $0,25\,$ мм. А размер почвенных частиц в аналитической пробе для определения кислотности может быть большим, но не должен превышать $1-2\,$ мм.

Прежде чем приступить к измельчению сухой почвы, из средней лабораторной пробы отбирают пробу почвы для определения углерода и азота. Образец почвы расстилают на бумаге ровным слоем толщиной 5 мм. Крупные частицы измельчают. Затем делят на квадраты со стороной 3 — 4 см. Из каждого квадрата на всю глубину слоя шпателем отбирают небольшие количества почвы и помещают в отдельный пакет из кальки. Масса этой пробы должна быть не менее 10 г. Затем из отобранной пробы почвы удаляют корни и различные органические остатки — их отбирают пинцетом, просматривая почву через увеличительной стекло. Наиболее мелкие частицы органики можно удалить при помощи стеклянной или эбонитовой палочки, натертой куском шерстяной ткани. Наэлектризованной палочкой проводят на расстоянии нескольких сантиметров от слоя почвы. При этом мелкие органические остатки прилипают к ней и удаляются из почвы. Палочку нельзя подносить очень близко к почве, так как при этом к ней могут пристать частицы почвы.

Затем почву измельчают и просеивают через сито с диаметром отверстий 0,25 мм. Операцию измельчения проводят до тех пор, пока весь образец не пройдет через сито.

Подготовленный таким образом образец хранят до проведения анализа в пакетиках из кальки.

Оставшуюся часть сухого образца измельчают на почвенной мельнице или растирают в фарфоровой ступке пестиком с резиновым наконечником. Растертый и просушенный образец пропускают через сито с диаметром отверстий 1-2 мм. Растирание и просеивание проводят до тех пор, пока весь взятый образец не пройдет через сито. Допускается отброс только обломков камней, крупных корней и инородных включений. Образцы хранятся в закрытых крафтовых пакетах в помещении, где отсутствуют химические реактивы.

Навеску почвы для анализа берут методом «средней пробы». Для этого просеянный образец рассыпают тонким слоем (около 0,5 см) на листе бумаги в виде квадрата и делят его шпателем отбирают часть образца.

1.2. Определение содержания обменного калия в почве в 1 %-ной углеаммонийной вытяжке с завершением на пламенном фотометре по методу Б.П. Мачигина в модификации ЦИНАО

Значение анализа. О степени обеспеченности почтвы элементом судят по содержанию в ней этих форм элемента. Обменный калий извлекают из почвы солевыми вытяжками, вытесняя калий

ионом аммония. В углеаммонийную вытяжку перехо¬дят и водорастворимые соединения. Поскольку водорастворимых соединений калия в почве мало – они большого значения в питании растений не имеют.

Принцип метода. Метод основан на измерении интенсивности излучения элементов в пламени. Калий в вытяжках определяют пламенно-фотометрическим методом.

Ход анализа. Калий определяют на пламенном фотометре, непосредственно распыляя вытяжки из почв в пламя. Используют светофильтр, пропускающий аналитические линии калия.

Готовим образцовый раствор для определения обменного калия в почве с помощью пламенного фотометра: берем 8 колб на 250 мл и помещаем указанные в таблице объемы маточного раствора. Объемы растворов доводят до метки экстрагирующим раствором (раствор углекислого аммония 1%)

Характеристики раствора			Номе	р раствој	ра сравно	ения			
1	2	3	4	5	6	7	8		
Объем раствора 0 1,0			2,0	3,0	5,0	7,5	10	15	

Образцовые растворы анализируют на пламенном фотометре и по полученным данным строят калибровочный график.

Содержание калия вычисляют по формуле:

$$K = \frac{a \times B \times 1000}{c \times 1000}$$

где: К – содержание подвижного калия в почве, мг/кг;

а – концентрация К2О в 1 л вытяжки по калибровочному графику;

в – общий объем вытяжки, мл;

1000 – для пересчета на 1 кг почвы;

с – навеска почвы, г;

1000 – коэффициент пересчета концентрации на 1 мл.

Подведение итогов занятия: сравнивая полученные в агрохимическом анализе данные с группировкой почв, определяется обеспеченность почвы обменным калием и рассчитывается его количество (кг) на 1 гектаре (табл. 1).

Таблица 1 - Группировка почв по содержанию обменного калия

Класс	Обеспеченность	Содержание К2О, мг/кг
1	очень низкая	менее 100
2	низкая 101-200	
3	средняя 201-300	
4	повышенная	301-400
5	высокая	401-600
6	очень высокая	более 600

Реактивы:

-раствор углекислого аммония концентрации 10 г/дм3 с рН 9,0.

-образцовые растворы К2О

Для настройки и калибровки пламенного фотометра готовят серию растворов сравнения: в мерные колбы на 250 см3 помещают указанные в таблице объемы раствора, приготовленного по пункту. Объемы растворов доводят до метки экстрагирующим раствором.

Растворы сравнения хранят не более 15 дней.

	Характеристика раствора			Номе	Номер раствора сравнения						
	1	2	3	4	5	6	7	8			
	Объем раствора,			opa,	приготовленного			ПО	пункту		2,
см3	0	1,0	2,0	3,0	5,0	7,5	10,0	15,0			
	Концег	нтрация	рация К2О в раств			орах сравнения, г/дм3			0,002	0,004	0,006
	0,010	0,015	0,020	0,030							
	Массовая доля			K2O E			почве,		МЛН-		
1	0	40	80	120	200	300	400	600			

Принцип метода. Данный метод анализа основан на измерении интенсивности излучения элементов в пламени. Анализируемый раствор распыляют пульверизатором и образующийся туман вводят в пламя горелки прибора — пламенного фотометра. В пламени сначала происходит поглощение энергии атомами, а затем выделение энергии в виде лучей с определенной длиной волны. Так как температура пламени невысока, то получающиеся спектры сравнительно просты: излучения состоят из немногих спектральных линий с характерной для каждого элемента длиной волны. Одну из этих линий выделяют интерференционным светофильтром, направляют ее на фотоэлемент и, измерив силу тока гальванометром, определяют интенсивность излучения. При соблюдении определенных условий она пропорциональна концентрации вещества в растворе.

Начало работы.

- -Включить прибор.
- -Открыть регулятор газа, повернув его на четверть против часовой стрелки.
- -Открыть регулятор воздуха, его давление должно превысить 7 psi. Доведите давление воздуха до 10 psi.
- -Загорится красный газовый диод, и зуммер подаст сигнал, замолчав через 3 секунды. Автоматически произойдет возгорание и загорится желтый диод.

Рисунок 2. Пламенный фотометр ПФА-378

-Повернуть регулятор газа так, чтобы получить ровное пламя с голубым кончиком приблизительно 8-10 мм высотой. Подождите около 20 минут для стабилизации пламени. Период в 20 минут может зависеть от состояния окружающей среды. Как только пламя стабилизируется, оно будет гореть до выключения, повторная стабилизация не нужна. В случае выключения питания подача газа автоматически прекратится. В этом случае повторить все вышеописанные процедуры.

Следующие надписи по очереди появляются на дисплее при начале работы:

Экран модели

* ПФА-378 *

Пламенный Фотометр

Экран версии

Программного обеспечения

Версия х.х

Month yyyy

Экран начала работы Проверка....

Пожалуйста подождите....

ВЫБОР ФУНКЦИИ. Экран функции показывается после завершения процесса начала работы.

Экран функции 1. Чтение

2. Калибровка

3. Просмотр 4. Печать

Активные клавиши: <1-4>

ВЫБОР ТРЕБУЕМОЙ ФУНКЦИИ. Использовать активные кнопки 1-4 для выбора требуемой функции. На дисплее появится соответствующая картинка.

РАБОТА С ФУНКЦИЕЙ КАЛИБРОВКИ. Перед использованием этой функции для создания кривой калибровки необходимо установить следующие параметры:

- а. Режим, где заданы величины концентрации и коэффициент растворения (1).
- b. Элементы для калибровки (2).
- с. Тип кривой (3).
- d. Количество стандартов (3.1 или 3.2).
- е. Численная концентрация стандартов (4).

После выбора функции появляется экран режима калибровки

Экран режима калибровки

Выберите способ измерения

1.GEN. 2.SERUM 3.URINE

Активные клавиши: <1-3>

<ESC> для возврата к экрану функции

1. ВЫБОР ТРЕБУЕМОГО РЕЖИМА КАЛИБРОВКИ.

Используйте активные кнопки <1-3> для выбора требуемого режима. Появится экран элементов калибровки.

Экран элементов калибровки

1. Na 2.K 3. Li 4. Ca

<#. ENT>

Активные клавиши: <1 to 4>

<ESC> для возврата к экрану режима калибровки

2. ВЫБОР ЭЛЕМЕНТОВ ДЛЯ КАЛИБРОВКИ.

Использовать активные кнопки <1-4> для выбора требуемых элементов для калибровки.

Отметка будет указывать на выбор.

Нажать <ENTER> для подтверждения выбора элемента. Появится экран опций выбора кривой.

Экран опций выбора кривой

* Кривая *

1.Сегментная 2. Квадратичная

Активные клавиши: <1, 2>

<ESC> для возврата к экрану элементов калибровки

3. ВЫБОР ТРЕБУЕМОЙ ОПЦИИ КРИВОЙ КАЛИБРОВКИ.

Использовать активные клавиши <1,2> для выбора требуемой опции. Появляется экран ввода номера стандартов 3.1 или 3.2.

3.1. Нажать <1> для выбора сегментной кривой калибровки. Отобразится экран номера стандартизации - 1.

Экран номера стандартизации - 1

Введите номера стандартов

(min: 2 max:20): 2

Активные клавиши: <#> <ENTER>, <ESC>

<ESC> to CURVE FIT OPTION SCREEN

Нажать <ENTER> для подтверждения выбора или нажать <ESC> для отмены выбора или использовать цифровые клавиши <#> для выбора номеров стандартов.

После установки номеров стандартов появляется экран концентрации стандартов.

3.2. Нажать <2> для выбора квадратичной кривой калибровки. Появится экран номера стандартизации - 2.

Экран номера стандартизации - 2

Введите номера стандартов

(min: 3 max:20): 3

Активные клавиши: <#> <ENTER>, <ESC>

<ESC> для возврата к экрану опций кривой

Нажать <ENTER> для подтверждения ввода или нажать <ESC> для отмены ввода или использовать цифровые клавиши <#> для установки номеров стандартов.

После установки номеров стандартов появляется экран концентрации стандартов.

4. ВВОД ВЕЛИЧИНЫ КОНЦЕНТРАЦИИ СТАНДАРТОВ.

Экран концентрации стандартов

[STD-##] Na K

Li Ca

Активные клавиши: <#>, <ENTER>, <ESC>

<ESC> для возврата к экранам номеров стандартов

Использовать цифровые клавиши <#> для ввода величины концентрации стандартов.

Нажать <ENTER> для подтверждения или нажать <ESC> для отмены ввода данных.

Экран концентрации стандартов появляется много раз после операций 3.1 или 3.2 для подтверждения ввода концентраций для всех стандартов. После ввода величин концентраций для всех стандартов появляется экран подтверждения стандартов, где можно изменить введенные данные в случае необходимости.

Экран подтверждения стандартов.

Будете ли вы проверять введенные

Концентрации? <Да / Нет>

Активные клавиши: <YES>, <NO>

Опция <Да>. Вновь появляется экран концентраций стандартов.

Экран концентрации стандартов

ххххх=Введенная концентрация

[STD-##] Na xxxxx K xxxxx

Li xxxxx Ca xxxxx

Активные клавиши: <#>, <ENTER>, <ESC>

<ESC> для возврата к экранам номеров стандартов

Нажать <ENTER> для подтверждения ввода или нажать <ESO для отмены ввода или использовать цифровые клавиши <#> для ввода концентраций стандартов

Опция <Нет>. В случае выбора сегментальной кривой появляется следующий экран ввода второго относительного стандарта, требуемого во время стандартизации:

Your Mid Range Ref?

Enter Std. No

Использовать цифровые клавиши <#> для ввода требуемых стандартов.

Нажать <ESC> для отмены ввода или нажать <ENTER> для подтверждения ввода - вы перейдете к пункту 5.

В случае квадратичной кривой вы сразу перейдете к пункту 5.

Итог: Во время пунктов 1-4 вы установили параметры, необходимые для создания кривой калибровки и перейдёте к циклу измерения 5.

5. ЦИКЛ ИЗМЕРЕНИЙ ПРИ СОЗДАНИИ КРИВОЛИНЕЙНОЙ КАЛИБРОВКИ.

Цикл измерений связан с измерениями интенсивности эмиссий чистых и стандартных растворов. Точность стандартов влияет на точность анализа проб.

Появляются экраны, соответствующие чистому измерению и операции чистки в порядке, необходимом для цикла измерений.

Процесс чистого измерения

Экран чистого измерения

Подача чистой пробы

<ENT>

Активные клавиши: <ENTER>

<ESO> для перехода к экрану меню проб

Загрузить чистый раствор и нажать <ENTER>. Пока прибор измеряет интенсивность эмиссии чистого раствора для выбранных элементов, горит экран ожидания.

Экран ожидания

El = измеряемый элемент

Пожалуйста, подождите.....

ЧтениеЕ1

Измерение занимает приблизительно (5 сек/элемент + 7) секунд.

После этого перейдите к процедуре очистки

Процедура очистки важна для того, чтобы вымыть остатки последней пробы из распылителя и смесительной камеры, чтобы избежать загрязнения следующей пробы. Вслед за любым измерением интенсивности эмиссии отображается экран очистки.

Экран очистки

Подача дистиллированной воды

Очистка! <ENT>

Активные клавиши: <ENTER>

После завершения чистого измерения появляется экран загрузки стандартов для начала стандартного измерения и экран операции очистки в порядке, необходимом для цикла измерений.

Экран загрузки стандартов

Загрузить стандарт: #

раствор <ENT>

Активные клавиши: <ENTER>, <ESC>

<ESC> для возврата к экрану подачи чистого раствора

Загрузить стандартный раствор и нажмите <ENTER>. Экран ожидания будет гореть во время измерения интенсивности раствора стандарта для выбранного элемента. Измерение занимает приблизительно 5 сек/элемент + 7 секунд. Чистка должна проводиться так, как описано в экранах меню очистки, идущих за измерением интенсивности эмиссии. Вы вернетесь на экран загрузки

стандартов для следующего измерения. Так будет продолжаться до конца измерений всех стандартов.

Вслед за окончанием измерений всех стандартов появляется экран сохранения кривой для сохранения созданной кривой.

Экран сохранения кривой

Сохранить данную кривую?

<Да / Нет>

Активные клавиши: <Да>, <Нет>

Опция <Нет>. Появляется экран проверки калибровки, где можно распечатать таблицу проверки калибровки для проверки кривой.

Экран проверки калибровки

Распечатать вашу таблицу

проверки калибровки?

Активные клавиши: <Да>, <Нет>

Опция <Нет> - перевод на экран меню проб и прибор готов к анализу проб.

6. ПРОЦЕСС ИЗМЕРЕНИЯ ПРОБЫ.

Вслед за выполнением стандартизации перейдите в экран меню пробы.

Экран меню пробы

- 1. SAMPLES 2. RAPID 3. VIEW
- 4. PRINT 5. NORM 6. SAVE

Активные клавиши: <#>, <ESC> для выхода

Нажать <2> для выбора продолжительного измерения пробы. Отображается экран быстрой подачи проб.

Экран быстрой подачи проб

Подача пробы!!

<ENT>

Активные клавиши: <ENT>

<ESC> для возврата к экрану меню проб

Загрузить раствор пробы и нажать <ENTER>. Пока прибор измеряет интенсивность эмиссии раствора пробы для выбранных элементов, горит экран ожидания.

Измерение занимает приблизительно (5сек/элемент + 7) секунд.

Концентрация измеряемой пробы обновляется и показывается на экране быстрого просмотра.

Экран быстрого просмотра

uuu = единица; хххх = концентрация

Conc uuu Na xxxx K xxxx

Li xxxx Ca xxxx

<ESC> для возврата к экрану меню проб

1.3. Определение макро и микроэлементов в растениях атомно-абсорбционным методом

Метод атомно-абсорбционной спектрофотометрии (AAC) основан на явлении селективного поглощения (абсорбции) резонансного излучения определяемого элемента атомным паром исследуемого вещества. Принцип метода иллюстрирует рисунок 3.

Превращение анализируемой пробы из жидкого (или твердого) состояния в атомный пар происходит в атомизаторе. Пар вводится в аналитическую зону атомизатора, просвечиваемую источником излучения с линейчатым спектром изучаемого элемента.

Рисунок 3. Принципиальная схема атомно-абсорбционного спектрофотометра:

1 - источник резонансного излучения; 2 — атомизатор; 3 - аналитическая чаша; 4 — монохроматор; 1 — фотоумножитель; 6 — усилитель;

7 - регистрирующее устройство; 8 – проба.

Закон атомного поглощения аналогичен закону светопоглошения в молекулярной спектрофотометрии и характеризуется экспоненциальным убыванием интенсивности проходящего излучения в зависимости от длины поглощающего слоя атомного пара (длины атомизатора) и концентрации атомов определяемого элемента с. В определенном интервале концентрации,

зависящем от характера определяемого элемента и свойств источника резонансного излучения, поглощение излучения атомами подчиняется закону Бугера-Ламберта-Бера:

I=Iv10-klc или lg(Iv / I)=klc,

где I - интенсивность излучения после взаимодействия с атомами (после прохождения через атомизатор); Iv - интенсивность излучения до взаимодействия I - длина поглощающего слоя атомного пара: & - атомный коэффициент поглощения, зависящий от длины волны и линии поглощения. Величину lg(Iv / I) называют атомным поглощением A, она аналогична оптической плотности в молекулярной спектрофотометрии. Указанная зависимость является практической основой атомно-абсорбционного метода анализа.

Рассмотрим отдельные узлы атомно-абсорбционного спектрофотометра и их роль в формировании аналитического сигнала.

Источник излучения. Наиболее распространенным источником резонансного излучения для ААС является лампа с полым катодом, изготовленным из определяемого металла или его сплава. Спектр лампы содержит линии металла катода и заполняющего лампу газа, обычно неона. Важнейшим фактором, влияющим на точность и чувствительность анализа, является стабильность излучения лампы. Она определяется конструктивными особенностями и индивидуальными свойствами лампы, а также зависит от качества работы источника питания.

Кроме ламп с полым катодом, в практике атомно-абсорбционного анализа применяют высокочастотные безэлектродные лампы, представляющие собой кварцевый или стеклянный баллон (шарик), в который введены соответствующий металл (или его соединение) и инертный газ, поддерживающий разряд в лампе. Высокочастотные лампы наиболее часто используют для определения тех элементов, для которых лампы с полым катодом не отличаются высокой стабильностью и надежностью в работе. Это - мышьяк, сурьма, висмут, селен, теллур.

Атомизатор. В ААС существуют варианты пламенных и электротермических атомизаторов.

В практике анализа наибольшее распространение получили пламенные атомизаторы. В них аналитической зоной служит участок непосредственно над газовой горелкой, через который проходит луч от источника излучения. Обычно раствор распыляют потоком газа и равномерно вводят в пламя в виде аэрозоля, регистрируя установившееся значение абсорбции. Наиболее эффективным способом атомизации является пламя ацетилен - воздух. Эта смесь используется при определе—нии большинства элементов, не образующих термостойких окислов. Для элементов, склонных к образованию термостойких окислов и труднодиссоциируемых комплексов (алюминий, кремний, титан, молибден и некоторые другие) следует использовать смесь закись азота (в качестве газа - окислителя) - ацетилен - воздух, которая позволяет получить наиболее высокотемпературное пламя.

Электротермическими атомизаторми (ЭТА) служат печи сопротивления - трубки, тигли, стержни, нити из тугоплавкого материала, К ЭТА относится и вариант гидридной техники, в котором кварцевую трубку нагревают электропечью. Во всех типах ЭТА осуществляют полное импульсное испарение анализируемых микропроб. Пары пробы переносятся через просвечиваемую полость трубки или зону над телом нагрева за счет диффузии, конвекции или с помощью потока инертного газа. Применение ЭТА позволяет повысить чувствительность и предел обнаружения элементов на 1-2 порядка по сравнению с пламенными атомизаторами (0,001 - 0,0001 мкг/см3).

Монохроматор. В ААС монохроматор выделяет резонансную аналитическую линию и в большой степени отделяет ее от молекулярных спектров и сплошного фона, излучаемых атомизаторами. В современных атомно-абсорбционных спектрофотометрах используются монохроматоры, позволяющие выделять спектральную полосу шириной 0,2-2 нм в интервале от 190 до 850 нм.

Приемное и регистрирующее устройство. В качестве детектора излучения используют фотоэлектронные умножители - ФЭУ. Фототок с ФЭУ после усиления и логарифмирования поступает на регистрирующее устройство. Современные атомно-абсорбционные спектрофотометры оснащены цифровой индикацией, цифропечатью и ЭВМ, что позволяет получать результаты в единицах концентрации, интегрировать аналити¬ческий сигнал за определенный промежуток времени и выдавать его среднее значение, проводить статистическую обработку результатов.

Помехи, влияющие на результаты атомно-абсорбционного анализа. (Методы их учета)

Помехи, возникающие в ходе атомно-абсорбиионного анализа почв и растений, можно подразделить на пять групп:

1) спектральные помехи;

- 2) фоновые помехи (неселективное поглощение);
- 3) ионизационные помехи;
- 4) помехи из-за различий физических свойств растворов;
- 5) химические помехи.

Спектральные помехи обусловлены явлением поглощения излучения не только резонансной линией определяемого элемента, но и атомами других элементов с близкой длиной волны. По сравнению с эмиссионным спектральным методом в атом но-абсорбционном анализе взаимное наложение спектральных линий элементов достаточно мало.

Неселективное поглощение излучения возникает в результате светорассеяния, молекулярного поглощения, а также поглощения пламенем или ЭТА. Светорассеяние и молекулярное поглощение происходят при неполной атомизации пробы и вызываются появлением в аналитической зоне твердых частиц и молекул основного вещества пробы. Собственное излучение ЭТА имеет спектр черного тела, для пламени характерно излучение со структурой молекулярного спектра.

Для учета спектральных помех и неселективного поглощения применяют так называемый корректор фона. В качестве корректора фона обычно используют оптическую схему со вспомогательным источником сплошного спектра - дейтериевой лампой. В последнее десятилетие широкое распространение получил метод коррекции фона, основанный на эффекте расщепления спектральных линий в магнитном поле (эффект Зеемана).

Ионизационные помехи вызваны снижением количества нейтральных атомов в аналитической зоне атомизатора в результате превращения их в положительно заряженные ионы под действием температуры пламени. В этом случае интенсивность поглощения резонансного излучения существенно уменьшается. Данный вид помех имеет место при определении элементов с низкими потенциалами ионизации (щелочные и щелочноземельные элементы). Контролировать ионизацию в пламени можно путем добавления к растворам проб и стандартов избытка легко ионизируемых элементов. Обычно в качестве ионизационного буфера используют растворы солей цезия, лития и калия.

Помехи, возникающие из-за различий физических свойств растворов (вязкости, поверхностного натяжения и др.), можно контроли ровать, максимально сближая состав (содержание солей, концентрация растворителей) растворов проб и стандартов. При невозможности нивелировать различия в составах следует использовать метод добавок.

Химические помехи обусловлены присутствием трудно диссоциируемых соединений определяемого элемента в аналитической зоне атомизации. В ряде случаев такие соединения могут образовываться непосредственно в пламени при распылении в него анализируемого раствора. В результате снижается количество свободных атомов, способных к поглощению резонансного излучения. Типичным проявлением химических помех является снижение абсорбции при определении в почве щелочноземельных элементов в присутствии фосфора, кремния, алюминия. Другим примером помех такого рода служит уменьшение сигнала поглощения при определении алюминия, молибдена, ванадия и др. в результате образования устойчивых окислов.

Устранить влияние химических помех можно двумя путями:

- 1) использовать высокотемпературное пламя, энергия которого достаточно высока и способна разрушить многие устойчивые соединения и атомизировать пробу;
- 2) добавлять к растворам проб и стандартов маскирующие вещества, которые реагируют с мешающими элементами и снимают возможные химические помехи.

Примером служит добавление к растворам (при анализе почв, растений, вод) лантана, который при определении кальция, магния, стронция и бария устраняет де премирующее влияние фосфора, кремния и алюминия. Позволяет снизить химические помехи и полная идентификация по составу растворов проб и стандартов.

Атомно-абсорбционный метод отличается от традиционных аналитических методов простотой выполнения анализа и высокой производительностью. Он обеспечивает предел обнаружения многих элементов 0,1-0,01 мкг/см3 (с атомизацией в пламени) и ниже, что в большинстве случаев оказывается достаточным для применения метода в почвенно - агрохимических исследованиях..

Подготовка растительных проб для определения тяжелых металлов

Способ сухой минерализации основан на полном разложении органических веществ путем сжигания проб растений в муфельной печи.

Ход анализа. В чашку или тигель берут измельченную навеску растительной пробы (при определении цинка, меди и марганца -2 г; кадмия, свинца, никеля, хрома и кобальта -10-15 г), взвешенную с точностью не более 0,01 г, добавляют 96%-й этиловый спирт из расчета 5 см3 спирта на 1 г сухого вещества пробы, накрывают часовым стеклом и оставляют на 24 часа.

Пробы высушивают и затем обугливают на электроплите до прекращения выделения дыма, не допуская воспламенения. Затем тигли помещают в холодную муфельную печь и, повышая её температуру на 50 0C каждые полчаса, доводят температуру печи до 450 0C и продолжают минерализацию в течение 10-15 часов до получения серой золы.

Охлажденную до комнатной температуры золу смачивают по каплям азотной кислоты (1:1), выпаривают на водяной бане, помещают в муфельную печь, доводят её температуру до 300 0С и выдерживают 30 минут. Этот цикл может быть повторен несколько раз до получения золы белого или слегка окрашенного цвета без обугленных частиц.

Одновременно с пробами в каждой серии анализа проводится холостой опыт: тигель (чашка), не содержащий навесок, но с добавлением того же количества реактивов, что и в пробы, участвует во всех операциях (обугливание, озоление, растворение, экстракция).

Аппаратура, реактивы, материалы:

- весы лабораторные с метрологическими характеристиками (ГОСТ 24104);
- муфельная печь или электропечь сопротивления камерная лабораторная;
- электроплитка бытовая по ГОСТ 1419;
- баня водяная;
- тигли или чашки кварцевые (ГОСТ 19908);
- стекла часовые;
- цилиндры мерные объемом наа 10 и 50 см3 (ГОСТ 1770);
- пипетка объемом на 1 см3 по ГОСТу 20292;
- спирт этиловый ректификованный (ГОСТ 18300);
- кислота азотная (ГОСТ 11125. «ос.ч»). раствор в бидистиллированной воде (1:1) по объему.

Валовое содержание микроэлементов

Методы пробоподготовки для определения валового содержания микроэлементов основаны на полном разложении пробы растений и переведении её в раствор.

Для разложения растений применяют два метода: сухое озоление и кислотное сжигание (мокрое озоление). Описанный способ сухого озоления используют для определения железа, марганца, цинка, меди, кобальта, никеля, свинца, кадмия, хрома. После мокрого озоления кроме названных элементов возможно определение молибдена. При использовании фотометрических методов определения золу и остаток от мокрого сжигания проб обрабатывают 0,3М раствором соляной кислоты, затем приливают 5 см3 этого же раствора. Тигли помещают на водяную баню и нагревают в течение 30 минут. Полученный раствор переносят через воронку в градуированные пробирки объемом 20 см3. Тигель обмывают бидистиллированной водой и доводят ею раствор до метки.

Аппаратура, реактивы, материалы:

- баня водяная лабораторная;
- цилиндр мерный объемом 5 см3 по ГОСТу 1770;
- пробирки с притертыми пробками объемом 20 см3 по ГОСТу 1770;
- кислота соляная по ГОСТу 14261 «ос.ч». раствор в бидистиллированной воде с массовой долей 0,3М.

Техника выполнения измерений

Приготовление стандартных растворов. В качестве основных стандартных растворов используют государственные стандартные образцы (ГСО) с гарантированной концентрацией элемента или комплекса элементов -1000 мкг/см3.

Возможно приготовление стандартных растворов из окислов или солей металлов с постоянной стехиометрией.

Цинк. Метод основан на измерении поглощения электромагнитного резонансного излучения свободными атомами цинка.

Содержание цинка в разложенных и переведенных в раствор пробах растений определяют атомно-абсорбционным методом напрямую в пламени ацетилен-воздух.

Навеску 1,000 г металлического цинка помещают в стакан вместимостью 100 см1 и добавляют 20 см3 раствора азотной кислоты (1:1). Растворившийся цинк количественно

переносят в мерную колбу объемом 1000 см3 и доводят до метки 1%-ым раствором азотной кислоты. Полученный раствор имеет концентрацию 1000 мкг/см3 цинка.

Марганец. Метод основан на измерении поглощения электромагнитного резонансного излучения свободными атомами марганца.

Содержание марганца в разложенных и переведенных в раствор пробах растений определяют атомно-абсорбционным методом напрямую в пламени ацетилен-воздух.

Навеску 4,388 г сернокислого марганца {MnSO4 • 5H2O} помешают в стакан вместимостью 100 см3, растворяют в бидистиллированной воде и затем количественно переносят в мерную колбу объемом 1000 см3. В колбу приливают приблизительно 500 см3 бидистиллированной воды, добавляют 82 см3 концентрированной соляной кислоты и доводят до метки бидистиллированной водой. Полученный раствор имеет концентрацию 1000 мкг/см3 марганца.

Медь. Метод основан на измерении поглощения электромагнитного резонансного излучения свободными атомами меди.

Содержание меди в разложенных и переведенных в раствор пробах растений определяют атомно-абсорбционным методом напрямую в пламени ацетилен-воздух.

Навеску 3,798 г нитрата меди (Cu(NO3)2 • 3H2O) помешают в стакан вместимостью 100 см3, растворяют в бидистиллированной воде и количественно переносят в мерную колбу объемом 1000 см3. Добавляют 30 см раствора азотной кислоты (1:1) и доводят до метки 1%-ым раствором азотной кислоты. Полученный раствор имеет концентрацию меди- 1000 мкг/см3.

Свинец. Метод основан на измерении поглощения электромагнитного резонансного излучения свободными атомами свинца.

Содержание свинца в разложенных и переведенных в раствор пробах растений определяют атомно-абсорбционным методом напрямую в пламени ацетилен-воздух.

Навеску 1000 г металлического свинца помещают в стакан вместимостью 100 см3, растворяют в 30 см3 азотной кислоты (1:1) и количественно переносят в мерную колбу объемом 1000 см3. Доводят до метки 1%-ым раствором азотной кислоты. Полученный раствор имеет концентрацию 1000 мкг/см' свинца.

Кадмий. Метод основан на измерении поглощения электромагнитного резонансного излучения свободными атомами кадмия.

Содержание кадмия в разложенных и переведенных в раствор пробах растений определяют атомно-абсорбционным методом напрямую в пламени ацетилен-воздух.

Навеску 1,142 г оксида кадмия (CdO) помешают в стакан вместимостью 100 см3, растворяют в 20 см3 азотной кислоты (1:1) и количественно переносят в мерную колбу объемом 1000 см3. Доводят объем до метки 1%-ым раствором азотной кислоты. Полученный раствор имеет концентрацию 1000 мкг/см3 кадмия.

Никель. Метод основан на измерении поглощения электромагнитного резонансного излучения свободными атомами никеля.

Содержание никеля в разложенных и переведенных в раствор пробах растений определяют атомно-абсорбционным методом напрямую в пламени ацетилен-воздух.

Навеску 4,953 г нитрата никеля (N(KO;):) помещают в стакан вместимостью 100 см', растворяют в бидистиллированной воде и количественно переносят в мерную колбу объемом 1000 см", доводят объем до метки 1%-ым раствором азотной кислоты.

Кобальт. Метод основан на измерении поглощения электромагнитного резонансного излучения свободными атомами кобальта.

Содержание кобальта в разложенных и переведенных в раствор пробах растений определяют атомно-абсорбционным методом напрямую в пламени ацетилен-воздух.

Навеску 4,769 сернокислого кобальта (CoSO4 • 7H2O) помещают в стакан вместимостью 100 см', растворяют в бидистиллированной воде и количественно переносят в мерную колбу объемом 1000 см3. Добавляют 50 см3 азотной кислоты (1:1) и доводят до метки бидистиллированной водой. Полученный раствор имеет концентрацию 1000 мкг/см3 кобальта.

Железо. Навеску 8,635 г железоаммонийных квасцов (FeNH4(SO4)2 x12H2O) помешают в стакан вместимостью 100 см3, растворяют в 50 см3 8%-го раствора серной кислоты, количественно переносят в мерную колбу объемом 1000 см3 и доводят до метки бидистиллированной водой. Полученный раствор имеет концентрацию 1000 мкг/см3 железа.

Хром. Метод основан на измерении поглощения электромагнитного резонансного излучения свободными атомами хрома.

Содержание хрома в разложенных и переведенных в раствор пробах растений определяют атомно-абсорбционным методом напрямую в пламени ацетилен-воздух.

Навеску 3,734 г хромата калия (К2СгО4) помещают в стакан вместимостью 100 см3, растворяют в бидистиллированной воде, количественно переносят в мерную колбу объемом 1000 см3 и доводят до метки 1%-ым раствором соляной кислоты. Полученный раствор имеет концентрацию 1000 мкг/см3.

Основные стандартные растворы хранят в герметичной посуде из стекла или полиэтилена высокого давления на рассеянном свету. Гарантированный срок хранения основных растворов - 1 год.

Промежуточные стандартные растворы элементов готовят последовательным разбавлением основных растворов в 10 и 100 раз 1%-ой азотной кислотой. Эти растворы хранят в герметичной посуде не более 1 года.

Стандартные растворы сравнения готовят из промежуточных растворов путем разбавления тем же раствором кислоты, проб. Содержание тяжелых металлов не должно выходить за пределы следующих диапазонов рабочих концентраций: для железа, цинка и марганца — 0,1-5; для меди - 0,05-5; для хрома, никеля и свинца - 0,1-5; для кадмия - 0,02-1 мкг/см3. В рабочих диапазонах необходимо иметь по 3-4 стандартных раствора сравнения. Стандартные растворы сравнения могут быть как смешанными, так и моноэлементными. Растворы с концентрацией металла от 1 до 10 мкг/см3 хранят в герметичной посуде не более 1 месяца, растворы с концентрацией менее 1 мкг/см3 должны быть свежеприготовленными.

В качестве нулевого стандарта (бланк) используют 1%-ый раствор азотной или соляной кислоты, т.е. тот раствор, который применяли для растворения проб и разбавления растворов.

Аппаратура, реактивы, материалы

- 1. Государственные стандартные образцы (смешанные или моноэлементные) с концентрацией каждого элемента 1000 мкг/см3 или:
 - -цинк гранулированный по ГОСТу 4165;
 - -марганец сернокислый пятиводный по ГОСТу 435-77;
 - -медь азотнокислая трехводная по ГОСТу;
 - -свинец металлический по ТУ 6-09-3523-74;
 - -кадмий оксил по ГОСТу 11120-75;
 - -никель азотнокислый шестиводный по ГОСТу 4055-70;
 - -кобальт сернокислый по ГОСТу 4462-58;
 - -калий хромовокислый по ГОСТу 4220;
 - 2. Колбы мерные объемом 1000см3 по ГОСТ 1770;
 - 3. Стаканы объемом 100 см3 по ГОСТ 25336:
- 4. Кислота азотная по ГОСТ 11125 «ос. ч.» раствор в бидистиллированной воде 1:1 по объему.
- 5. Кислота азотная по ГОСТ 11125 «ос. ч.» раствор в бидистиллировэнной воде с массовой долей 1%;
- 6. Кислота соляная по ГОСТ 14261 «ос. ч.» раствор в б и дистиллированной воде с массовой долей 1%;
- 7. Кислота серная по ГОСТ 4204 «ос. ч.» или «х. ч.» раствор в бидистиллированной воде с массовой долей 8%.

Проведение измерений. Подготовку атомно-абсорбционного спектрофотометра к работе, его включение и выведение на рабочий режим осуществляют в соответствии с инструкциями по эксплуатации. Особое внимание следует уделить выполнению таких моментов, как:

- установление требуемой силы тока (на каждой лампе с полым катодом указаны оптимальная сила тока и максимально допустимая) и прогрев источника резонансного излучения не менее 30 мин.;
- точная настройка монохроматора на резонансную линию по максимуму излучения при минимальной ширине щели, но проведение измерений при рекомендуемой ширине щели; используют наиболее чувствительные линии поглощения элементов со следующими длинами волн: цинк -213,9 нм. железо-248,3 нм, кадмий-228,8 нм, никель-232,0 нм, свинец 283,3 нм. кобальт 240,7 нм, марганец 278 нм. медь 324,8 нм, хром -357,9 нм;
- юстировка источников резонансного и (если корректором фона служит дейтериевая лампа и в спектрофотометре отсутствует режим автокомпенсации) нерезонансного излучения;

- юстировка высоты горелки и ее положения относительно луча источника резонансного излучения;
- если в состав инструкций по эксплуатации прибора не включено «Руководство для оператора» с оптимальными аналитическими параметрами определения каждого элемента, то юстировку высоты горелки и соотношение ацетилен/воздух необходимо проводить во время прогрева горелки по максимуму абсорбции одного из стандартных растворов

сравнения;

• прогрев включенной горелки перед началом измерений с одновременной ее промывкой бидистиллировамной водой в течение 5 мин.;

Техника измерений. Сначала распыляют в пламя нулевой стандарт (при экстракционном концентрировании - его экстракт) и устанавливают показания прибора на нуль. Затем в порядке возрастания концентрации измеряют абсорбцию стандартных растворов сравнения (или их экстрактов). В конце градуировки отмечают положение нулевой линии при распылении нулевого стандарта.

После окончания градуировки прибора в пламя распыляют ис-следуемые растворы и измеряют величину абсорбции (практически во всех моделях современных атом но-абсорбционных спектрофотометров предусмотрен режим авто по строения градуировочного графика, что позволяет получать результаты измерений, как в величине абсорбции, так и в единицах концентрации). Измерение каждого раствора проводится не менее двух раз. Для проверки стабильности работы прибора через каждые 10 - 15 измерений исследуемых проб в пламя вводят нулевой стандарт и один из стандартных растворов сравнения. Если обнаружено отклонение от первоначально полученных значений величины абсорбции (или концентрации), то градуировку прибора проводят заново и повторно измеряют последние 10-15 проб.

При прямом определении в исследуемых растворах кадмия, свинца, никеля, кобальта и хрома необходимо обязательно проводить коррекцию фонового поглощения.

Обработка результатов. При наличии в приборе автоматизированной системы расчета концентрации по величине абсорбции результаты можно получить в единицах концентрации. При ручной обработке данных строят график зависимости величины абсорбции от концентрации. По градуировочному графику находят концентрацию определяемого металла в исследуемом растворе (и в холостой пробе) и рассчитывают его содержание в пробе по формуле

 $X = ((Cx-CO)\cdot V)/m$

где Cx - концентрация элемента в исследуемом растворе, мкг/см3: C, - концентрация элемента в холостой пробе, мкг/см-1; V - объем исследуемого раствора; τ - навеска пробы, τ ; X-массовая доля элемента в пробе, млн-1 (мг/кг).

За окончательный результат принимают среднее арифметическое результатов двух параллельных определений.

Аппаратура, реактивы, материалы

- 1. Атомно-абсорбционный спектрофотометр с пламенным вариантом атомизатора и укомплектованный источниками резонансного излучения железа, марганца, цинка, меди, кадмия, свинца, кобальта, никеля и хрома (лампами с полым катодом, без электродными разрядными лампами).
- 2. Компрессор воздушный, соответствующий требованиям технической инструкции для атомно-абсорбционного спектрофотометра, или сжатый воздух в баллонах.
 - 3. Ацетилен растворенный и газообразный технический по ГОСТу 2457 в баллонах.

Определение содержания цинка, марганца, кобальта в почве атомно-абсорбционным методом Метод основан на извлечении соединений элементов из почвы и измерении поглощения электромагнитного резонансного излучения свободными атомами цинка, марганца, кобальта.

Содержание подвижного цинка, марганца, кобальта в большинстве используемых вытяжек определяют атомно-абсорбционным методом напрямую в пламени ацетилен - воздух.

При определении цинка в вытяжке 1 М раствора КС1 из-за высокой концентрации соли нарушается нормальное распыление раствора и горение пламени. Для устранения указанного явления необходимо предварительно разбавить вытяжку, использовать трёхщелевую горелку на атомно-абсорбционном спектрофотометре и учитывать не селективное поглощение с помощью корректора фона.

Методика определения подвижных соединений цинка, извлекаемых из почвы ацетатно-аммонийным буферным раствором с рН 4,8 и последующим атомно-абсорбционным и

фотометрическим днтизоновым окончанием утверждена в качестве Государственного стандарта РФ.

Методика определения подвижных соединений марганца, извлекаемых из почвы ацетатно-аммонийным буферным раствором с рН 4,8 (по Крупскому и Александровой), а также 0,1 М раствором 1/2 H2SO4 (по Пейве-Ринькису) и последующим атомно-абсорбционным и фотометрическим (с формальдоксимом) окончанием утверждена в качестве Государственного стандарта РФ.

При определении марганца по Крупскому и Александровой из карбонатных почв по стандартизованной методике на каждые 10 см3 почвенной вытяжки, контрольного раствора и растворов сравнения добавляют по 1 капле насыщенного раствора хлористого стронция.

Приготовление насыщенного раствора хлористого стронция - 100 г стронция хлористого шестиводного (по ГОСТ 4140) растворяют при нагревании в 100 см3 дистиллированной воды.

Содержание подвижного кобальта в используемых вытяжках можно определять атомноабсорбционным методом напрямую в пламени ацетилен - воздух. Однако с целью повышения чувствительности определения и устранения мешающего влияния матрицы предварительно проводят экстракционное концентрирование элемента. Для получения устойчивого комплекса кобальта наиболее часто используют 2-нитрозо-1 -нафтол, экстрагируют соединение изо-амиловым эфиром уксусной кислоты и в экстракте проводят определение кобальта атомно-абсорбционным методом.

Методика определения подвижных соединений кобальта, извлекаемых из почвы ацетатно-аммонийным буферным раствором с рН 4,8 (по Крупскому и Александровой), а также 1 М раствором азотной кислоты (по Пейве-Ринькису) и последующим атомно-абсорбционным и фотометрическим (с нитрозо-Р-солью и с 1 -(2-пиридилазо)-2-нафтолом (ПАН) окончанием) утверждена в качестве Государственного стандарта РФ.

В стандартной методике экстракционно-атомно-абсорбционное определение кобальта в вытяжке из почвы по Крупскому и Александровой проводят так же, как и меди.

В вытяжке из почвы по Пейве-Ринькису стандартная методика предусматривает экстракционно-атомно-абсорбционное определение кобальта с использованием 2-нитрозо-1 нафтола.

Ход анализа

25 см3 вытяжки из почвы или стандартного раствора сравнены: помещают в делительную воронку объемом 100 см3, добавляют 25 см3 маскирующего раствора и 2 см3 раствора 2-нитрозо-1-нафтола. После добавления каждого реагента содержимое воронки тщательно перемешивают. Воронку с содержимым оставляют на 1,5 ч. Затем добавляют 5 см3 изоамилацетата и в течение 1 мин энергично встряхивают. После разделения фаз водный нижний слой отбрасывают, а экстракт сливают в пробирку с притертой пробкой.

Реактивы

- 1. Маскирующий раствор готовят в день проведения анализа. В мерную колбу объемом 1000 см3 помещают 400 см3 40%-го раствора лимоннокислого натрия, 400 см3 40%-го раствора уксуснокислого натрия и 40 см5 концентрированного раствора перекиси водорода. Объем до метки доводят дистиллированной водой.
- 2. Стандартные растворы сравнения кобальта с содержанием элемента 0,1-5 мкг в 1 см3. Для приготовления используют ГСО с содержанием кобальта 1 мг/см3 или кобальт сернокислый (ГОСТ 4462);
- 3. 2-нитрозо-1-нафтол МРТУ 6-09-5829, «ч.д.а.», раствор в дистиллированной воде с массовой долей 0,1 %;
- 4. Натрий лимоннокислый трехзамещенный (ГОСТ 3161, «ч.д.а.»). раствор в дистиллированной воде с массовой долей 40%;
- 5. Натрий уксуснокислый (ГОСТ 199, «ч.д.а.»), раствор в дистиллированной воде с массовой долей 40%:
 - 6. Перекись водорода (ГОСТ 10929);
 - 7. Изоамиловый эфир уксусной кислоты (изоамилацетат) (МРТУ 6-09-2071);
 - 8. Дистиллированная вода.

Аппаратура и материалы.

- 1. Атомно-абсорбционный спектрофотометр.
- 2. Компрессор.
- 3. Воронки делительные объемом 100 см3 по ГОСТу 25336.

- 4. Колбы мерные объемом 100, 1000 см3 по ГОСТу 1770.
- 5. Пипетки объемом 1, 2 и 25 см3 по ГОСТу 20292.
- 6. Пробирки с притертыми пробками по ГОСТу 1770.
- 7. Цилиндры мерные объемом 50 и 500 см3 по ГОСТу 1770.

Определение содержания ртути в растениях беспламенным атомно-абсорбционным методом (методом «холодного пара»)

Метод основан на измерении поглощения электромагнитного резонансного излучения свободными атомами ртути. Для получения атомного пара ртути осуществляют разложение пробы растений и переведение её в раствор, восстановление в растворе химически связанной ртути до металлической, перевод её в газовую форму потоком воздуха и продувку этого воздуха с парами ртути через атомизатор (кварцевую трубку). Приводимая ниже методика является модификацией атомно-абсорбционного метода определения ртути с использованием отечественного ртутного анализатора типа «Юлия».

Подготовка почвы при определении валового содержания ртути: навеску 5 г измельченного и высушенного растительного материала помещают в коническую колбу объемом 500 см3. Последовательно приливают 1 см3 этилового спирта, 5 см3 бидистиллированной воды и 5 см3 азотной кислоты. Колбу закрывают маленькой воронкой, содержимое перемешивают и оставляют при комнатной температуре на ночь. Затем осторожно при помешивании пробы по каплям приливают 20 см3 серной кислоты, не допуская бурного выделения окислов азота.

Реактивы

- 1. 5%-й раствор калия марганцовокислого- 5 г реактива (ГОСТ 20490. «х.ч.») растворяют в бидистиллированной воде и доводят объем до 100 см3.
- 2. 5%-й раствор калия надсернокислого (персульфата ГОСТ 4146. «ч.д.а.»): 5 г реактива растворяют в бидистиллированной воде и доводят объем до 100 см3
 - 3. Кислота азотная по ГОСТ 11125 «ос.ч.».
 - 4. Кислота серная по ГОСТ 14262 «ос.ч.».
 - 5. Кислота соляная (ГОСТ 14261 «ос.ч.»). 4 М раствор в бидистиллированной воде.
 - 6. Вода бидистиллированная.

Аппаратура и материалы

- 1. Весы лабораторные общего назначения 2 класса точности по ГОСТу 24104.
- 2. Баня водяная лабораторная.
- 3. Колбы конические объемом 100 см3 по ГОСТу 25336.
- 4. Колбы мерные объемом 100 см' по ГОСТу 1770.
- 5. Цилиндры мерные объемом 5 и 20 см3 по ГОСТу 25336.
- 6. Воронки лабораторные по ГОСТ) 25336.
- 7. Стекла часовые.
- 8. Палочки стеклянные.
- 9. Фильтры беззольные «синяя лента».

Ход анализа

Аликвоту анализируемого раствора 1-2 см3 помещают в реакционную пробирку (1), добавляют 1 см3 10%-го раствора двухлористого олова и сразу же вводят в склянку барбатер. Снимают показания иономера. При сильном пенообразовании в реакционную пробирку перед добавлением раствора двухлористого олова вносят одну каплю силиконового вазелинового масла. После окончания измерения помещают барбатер реакционной пробирки в пустую приборную пробирку (2) и продувают газодинамическую систему анализатора до установления показаний стрелки иономера на цифру 100. Перед началом измерения барбатер находится в приборной пробирке (3), заполненной перед началом анализ 5 см3 5%-го раствора перманганата калия для поглощения отработанно ртути.

Калибровочную шкалу строят для двух диапазонов от 0 до 0.01 мкг и от 0,01 до 0.03 мкг ртути в реакционной пробирке. Для этого в реакционную пробирку вносят поочередно 0; 0,3; 0,5; 0,6; 0,8 и 1,0 см5 стандартного раствора сравнения содержащего 0,01 мкг в 1 см3 ртути (0; 0,003; 0,005; 0,006; 0,008; 0,01 мкг в реакционной пробирке), добавляют бидистиллированную воду до объема 2 см3. Затем приливают 1 см3 10%-го раствора двухлористого олова и сразу же вводят в склянку барбатер. Записывают показания иономера. Для построения калибровочной шкалы с диапазоном 0.01 - 0,03 мкг в реакционную пробирку вносят поочередно 0; 0.10; 0,15; 0,20; 0.25; 0.30 см3 стандартного раствора сравнения, содержащего 0.1 мкг/см3 ртути (0: 0,010; 0,015; 0,020; 0,025;

 $0,030\,$ мкг в реакционной пробирке). Далее ход анализа такой же, как и для растворов калибровочной шкалы от 0 до $0,01\,$ мкг.

Градуировочный график строят, откладывая по оси абсцисс концентрацию ртути в мкг/V реакционной пробирки, по оси ординат - пропускание, выраженное в % от полной шкалы в диапазоне 4-9 иономера. Оцифровка «0-100» верхней шкалы иономера соответствует диапазону 40 - 90 относительных единиц пропускания интенсивности резонансного излучения ртути.

Содержание ртути в мг/кг почвы рассчитывают по формуле

 $Hg = (C \cdot V0) / V \cdot m$

где C - концентрация ртути, найденная по градуировочному графику, мкг/ V; V0- объем исходной вытяжки (объем раствора разложенной пробы - 100 см3). V1 - объем аликвоты, см3; m - навеска почвы, r.

Реактивы

- 1. Основной стандартный раствор ртути с концентрацией 100 мкг/см3; 0.166 г азотнокислой ртути (ГОСТ 4520. «х.ч.») растворяют в бидистиллированной воде в колбе объемом 1000 см3, предварительно добавив 30 см3 концентрированной азотной кислоты (ГОСТ 11125. «ос.ч.») и несколько кристаллов калия хромовокислого (ГОСТ 4459 «х. ч.»). Раствор хранят в течение 3 месяцев. Или используют ГСО раствора соли ртути;
- 2. Стандартный раствор с концентрацией ртути 10 мкг/см3; 10 см3 основного стандартного раствора ртути помещают в мерную колбу объемом 100 см3 и доводят до метки бидистиллированной водой. Раствор готовят в день проведения анализа;
- 3. Стандартный раствор с концентрацией ртути 0.1 мкг/см3: 5 см3 раствора концентрацией ртути 10 мкг/см3 помещают в мерную колбу вместимостью 500 см3 и доводят объем до метки бидистиллированной волой. Раствор готовят в день проведения анализа;
- 4. Стандартный раствор с концентрацией ртути 0.01 мкг/см3 : 10 см3 раствора с концентрацией 0,1 мкг/см3 помещают в мерную колбу объемом 100 см3 и доводят до метки бидистиллированной водой. Раствор готовят в день проведения анализа;
- 5. 10%-й раствор двухлористого олова: 12 г олова двухлористого безводного (ГОСТ 3678, «ч.д.а.») растворяют в 15 см3 концентрированной соляной кислоты и доводят объем бидистиллированной водой до 100 см3.
- 6. 5%-й раствор калия марганцовокислого (перманганата калия, ГОСТ 20490, «х.ч.»): 5 г реактива растворяют в бидистиллированной воде и доводят объем до 100 см3. Раствор готовят в день проведения анализа.
 - 7. Масло вазелиновое или силиконовое.
 - 8. Вода бидистиллированная.

Аппаратура и материалы.

- 1. Анализатор ртути «Юлия-2», «Ртуть-101» или любой другой аналогичный анализатор ртути.
 - 2. Иономер или рН-метр (типаЭВ-74, рН 121).
 - 3. Колбы мерные объемом 100,500, 1000 см3 по ГОСТ 1770.
 - 4. Пипетки объемом 1, 2, 5, 10 см3 по ГОСТу 20292.
 - 5. Цилиндр мерный объемом 50 см3 по ГОСТу 25336.
- 1.4. Определение содержания органического вещества по методу Тюрина в модификации ЦИНАО (ГОСТ 26213)

Метод основан на окислении органического вещества раствором двухромовокислого калия в серной кислоте и последующем определении трехвалентного хрома, эквивалентного содержанию органического вещества, на фотоэлектроколориметре.

Метод не пригоден для проб с массовой долей хлорида более 0,6% и проб с массовой долей органического вещества более 15%.

Из размолотой почвы или породы отбирают представительную пробу массой 3-5 г для тонкого измельчения. Перед измельчением из пробы удаляют пинцетом видимые невооруженным глазом неразложившиеся корни и растительные остатки. Затем пробу полностью измельчают и пропускают через плетеное сито с отверстиями диаметром 0,25 мм. Для тонкого измельчения используют ступки и измельчительные устройства из фарфора, стали и других твердых материалов.

Ход анализа. Окисление органического вещества. Массу пробы почвы или породы для анализа определяют, исходя из предполагаемого содержания органичес¬кого вещества:

Массовая доля органического

Масса пробы для анализа, мг

вещества, % до 2 500-700 2-4 250-350 4-7 100-200 более 7 50- 100

Пробы почвы или породы взвешивают с погрешностью не более 1 мг и помещают в пробирки, установленные в штативы. К пробам приливают по 10 см3 хромовой смеси. В каждую пробирку помещают стеклянную палочку и тщательно перемешивают пробу с хромовой смесью. Затем штативы с пробирками опускают в кипящую водяную баню. Уровень воды в бане должен быть на 2-3 см выше уровня хромовой смеси в пробирках. Продолжительность нагревания суспензий - 1 ч с момента закипания воды в бане после погружения в нее пробирок. Содержимое пробирок перемешивают стеклянными палочками через каждые 20 минут. По истечении 1 ч штативы с пробирками помещают в водяную баню с холодной водой. После охлаждения в пробирки приливают по 40 см3 воды. Затем из пробирок вынимают палочки, тщательно перемешивают суспензии барбатацией воздуха и оставляют для оседания твердых частиц и полного осветления надосадочной части раствора. Вместо отстаивания допускается проводить фильтрование суспензий через беззольные фильтры (синяя лента).

Приготовление растворов сравнения. В девять пробирок наливают по 10 см3 хромовой смеси и нагревают их в течение 1 ч в кипящей водяной бане вместе с анализируемыми пробами. После охлаждения в пробирки приливают указанные далее в таблице объемы дистиллированной воды и раствора восстановителя. Растворы тщательно перемешивают барбатацией воздуха.

	Характеристика раствора				Номер раствора сравнения							
	1	2	3	4	5	6	$\overline{7}$	8	9			
	Объем	воды, с	м3	40	38	36	32	30	25	20	15	10
	Объем				раствора						восстанов	ителя,
см3	0	2	4	8	10	15	23	25	30			
	Масса органического вещества в растворе сравнения, мг											
	эквивалентная объему восстановителя											
	0	1,03	2,07	4,14	5,17	7,76	10,3	12,9	15,5			
	*											_

Фотометрирование растворов проводят в кювете с толщиной про¬свечиваемого слоя 1-2 см относительно раствора сравнения № 1 при длине волны 590 нм или используя оранжево-красный светофильтр с максимумом пропускания в области 560 - 600 нм. Растворы в кювету фотоэлектроколориметра переносят осторожно, не взмучивая осадка расчет. Массу органического вещества в анализируемой пробе определяют по градуировочному графику. При построении градуировочного графика по оси абсцисс откладывают массу органического вещества в миллиграммах, соответствующую объему восстановителя в растворе сравнения, а по оси ординат - соответствующее показание прибора.

Массовую долю органического вещества (X) в процентах вычисляют по уравнению $X = m/m1 \cdot 100$,

где т - масса органического вещества в. анализируемой пробе, найденная по графику, мг;

m1 - масса пробы, мг;

100 - коэффициент пересчета в проценты.

Допускаемые относительные отклонения от аттестованного значения стандартного образца для двусторонней доверительной вероятности P=0.95

Массовая доля органического вещества, % Допускаемые отклонения, %(отн.)

менее 3 20

3-5 15

более 5 10

Аппаратура и материалы:

- 1. Фотоэлектроколориметр.
- 2. Баня водяная.
- 3. Весы торзионные или другие с погрешностью не более 1 мг.
- 4. Пробирки стеклянные термостойкие вместимостью 50 см3

- 5. Штатив для пробирок.
- 6. Бюретка или дозатор для отмеривания 10 см3 хромовой смеси.
- 7. Палочки стеклянные длиной 30 см.
- 8. Цилиндр или дозатор для отмеривания 40 см3 воды.
- 9. Груша резиновая со стеклянной трубкой или устройство для барбатации
- 10. Бюретка вместимостью 50 см3.
- 11. Колбы мерные вместимостью 1 дм3.

КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ДИСЦИПЛИНЕ «ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЙ»

- 1. Понятие лабораторной посуды
- 2. Виды лабораторной посуды.
- 3. Техника отбора растительных образцов.
- 4. Техника отбора почвенных образцов.
- 5. Технические средства отбора почвенных образцов.
- 6. Формы калия в почве
- 7. Методы определения калия в почве.
- 8. Что такое макроэлементы.
- 9. Что такое микроэлементы
- 10. Определение гумуса. Составные части гумуса
- 11. Методы определения органического вещества почвы.
- 12. Значение, принцип и ход анализа определения в почве нитратного азота с помощью ионоселективного электрода.
- 13. Значение, принцип и ход анализа определения нитрификационной способности почвы по Кравкову в модификации почвенного института им. В.В. Докучаева.
- 14. Значение, принцип и ход анализа определения содержания аммонийного азота с помощью реактива Несслера.
- 15. Значение, принцип и ход анализа определения содержания подвижного фосфора в карбонатных почвах по методу Б.П. Мачигина.
- 16. Значение, принцип и ход анализа определения содержания обменного калия в почве по методу Б.П. Мачигина в модификации ЦИНАО.
 - 17. Значение, принцип и ход анализа потенциометрического определения рН почвы.
- 18. Значение, принцип и ход анализа определения суммы поглощенных оснований по Каппену-Гильковицу.
- 19. Значение, принцип и ход анализа определения гумуса почвы по методу Тюрина в модификации ЦИНАО.

ВОПРОСЫ К ЭКЗАМЕНУ ПО ДИСЦИПЛИНЕ «ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЙ»

Теоретические вопросы

- 1. Инструментальные методы определение базовых характеристик агрофизического состояния почвы.
- 2. Методы определения плотности сложения, агрегатного состава, водопрочной структуры.
 - 3. Методы изучения гидрофизических свойств почвы.
- 4. Методы диагностики переуплотнения почвы. Определение физико-механических свойств почвы.
 - 5. Спектральные методы анализа. Сущность методов.
 - 6. Электрохимические методы анализа. Сущность методов.
 - 7. Хроматографические методы анализа. Сущность методов.
 - 8. Термические методы анализа. Сущность методов.

- 9. Понятие об аналитических приборах.
- 10. Типы аналитических приборов.
- 11. Спектральный анализ.
- 12. Сущность фотометрии.
- 13. Использование пламенной фотометрии в агрономических исследованиях. Основные приборы.
 - 14. Атомно-абсорбционный спектральный анализ, сущность метода.
 - 15. Потенциометрия. Сущность потенциометрии.
- 16. Применение потенциометрических методов в агрономии: диагностика pH, ионов Ca, K, Cl, NO3.
- 17. Современные инструментальные методы определение базовых характеристик агрохимического состояния почвы.
- 18. Классические методы определения кислотности почвы и доступных элементов питания.
 - 19. Определение тяжелых металлов.
 - 20. Биохимические методы исследования растений.
 - 21. Отбор, этикетирование, транспортировка и хранение проб для анализа.
- 22. Средние пробы культурных растений и подготовка их к анализу отбор с отдельных растений, мелкоделяночных посевов, крупных делянок.
- 23. Биологические свойства почвы, их значение для растений и возможность регулирования.
- 24. Инструментальные методы определение базовых характеристик биологических свойств почвы.
 - 25. Методы определения органического вещества почвы.
 - 26. Методы определения дыхания.
 - 27. Методы определения микробиологической активности.
 - 28. Агрохимическая служба РФ и ее роль в химизации земледелия.

Практико-ориентированные задания

- 1. Значение, принцип и ход анализа определения в почве нитратного азота с помощью ионоселективного электрода.
- 2. Значение, принцип и ход анализа определения нитрификационной способности почвы по Кравкову в модификации почвенного института им. В.В. Докучаева.
- 3. Значение, принцип и ход анализа определения содержания аммонийного азота с помощью реактива Несслера.
- 4. Значение, принцип и ход анализа определения содержания подвижного фосфора в карбонатных почвах по методу Б.П. Мачигина.
- 5. Значение, принцип и ход анализа определения содержания обменного калия в почве по методу Б.П. Мачигина в модификации ЦИНАО.
 - 6. Значение, принцип и ход анализа потенциометрического определения рН почвы.
- 7. Значение, принцип и ход анализа определения суммы поглощенных оснований по Каппену-Гильковицу.
- 8. Значение, принцип и ход анализа определения гумуса почвы по методу Тюрина в модификации ЦИНАО.

ПРИМЕРНАЯ ТЕМАТИКА ДОКЛАДОВ, СТАТЕЙ ПО ДИСЦИПЛИНЕ «ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЙ»

- 1. Плодородие почвы, его виды. Пути повышения эффективного плодородия.
- 2. Потенциальное и эффективное плодородие почв. Основные приемы повышения эффективного плодородия почв.
 - 3. Составные части почвы и их роль в питании растений.
 - 4. Емкость поглощения и состав поглощенных катионов почв.
- 5. Реакция почвенного раствора. Виды кислотности. Роль разных видов кислотности почв в питании растений.
 - 6. Что такое буферность и какова ее роль в питании растений и применении удобрений.
 - 7. Агрофизические, биологические и агрохимические показатели плодородия.
 - 8. Дайте определение нитрификационной способности почвы.

- 9. Источники поступления и потерь азота из почвы. Усвоение растениями аммиачного и нитратного азота.
- 10. Круговорот азота в природе. Мероприятия по улучшению азотного баланса в земледелии.
 - 11. От каких факторов зависит скорость нитрификации?
 - 12. Содержание и формы фосфора в почве.
 - 13. Содержание и формы калия в почве.
 - 14. Как определить удобрения, содержащие аммиак?
 - 15. Микроудобрения, их характеристика, особенности применения
 - 16. Основные микроудобрения свойства и условия эффективного применения.
 - 17. Понятие о комплексных удобрениях. Их экономическое и агротехническое значение.

ПРИМЕРНАЯ ТЕМАТИКА РЕФЕРАТОВ ПО ДИСЦИПЛИНЕ «ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЙ»

- 1. Инструментальные методы определение базовых характеристик агрофизического состояния почвы.
- 2. Методы определения плотности сложения, агрегатного состава, водопрочной структуры.
 - 3. Методы изучения гидрофизических свойств почвы.
- 4. Методы диагностики переуплотнения почвы. Определение физико-механических свойств почвы.
 - 5. Спектральные методы анализа. Сущность методов.
 - 6. Электрохимические методы анализа. Сущность методов.
 - 7. Хроматографические методы анализа. Сущность методов.
 - 8. Термические методы анализа. Сущность методов.
 - 9. Понятие об аналитических приборах.
 - 10. Типы аналитических приборов.
 - 11. Спектральный анализ.
 - 12. Сущность фотометрии.
- 13. Использование пламенной фотометрии в агрономических исследованиях. Основные приборы.
 - 14. Атомно-абсорбционный спектральный анализ, сущность метода.
 - 15. Потенциометрия. Сущность потенциометрии.
 - 16. Применение потенциометрических методов в агрономии.
- 17. Современные инструментальные методы определение базовых характеристик агрохимического состояния почвы.
- 18. Классические методы определения кислотности почвы и доступных элементов питания.
 - 19. Методы определение тяжелых металлов.
 - 20. Биохимические методы исследования растений.
 - 21. Биологические свойства почвы, их значение для растений.
- 22. Инструментальные методы определение базовых характеристик биологических свойств почвы.
 - 23. Методы определения органического вещества почвы.
 - 24. Методы определения дыхания.
 - 25. Методы определения микробиологической активности.
 - 26. Агрохимическая служба РФ и ее роль в химизации земледелия.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- а) основная литература:
- 1. 1. ЭБС "Znanium" Кидин, В. В. Агрохимия : учеб.пособие / В. В. Кидин. Москва : ИНФРА-М, 2015. 351 с. (Гр. УМО). Режим доступа: http://znanium.com/bookread2.php? book=465823
- 2. ЭБС «Лань»: Ягодин, Б.А. Агрохимия [Электронный ресурс] : учеб. / Б.А. Ягодин, Ю.П. Жуков, В.И. Кобзаренко. Электрон. дан. Санкт-Петербург : Лань, 2016. 584 с. Режим доступа: https://e.lanbook.com/book/87600.
- 3. ЭБС «Лань»: Мамонтов, В.Г. Методы почвенных исследований [Электронный ресурс] : учебник / В.Г. Мамонтов. Электрон. дан. Санкт-Петербург : Лань, 2016. 260 с. Режим доступа: https://e.lanbook.com/book/76275.
 - б) дополнительная литература:
- 1. 1. ЭБС «Лань»: Семендяева, Н.В. Методы исследования почв и почвенного покрова [Электронный ресурс] : учеб. пособие / Н.В. Семендяева, А.Н. Мармулев, Н.И. Добротворская. Электрон. дан. Новосибирск : НГАУ, 2011. 202 с. Режим доступа: https://e.lanbook.com/book/4578.
- 2. ЭБ «Труды ученых СтГАУ»: Лабораторный практикум по агрохимии [электронный полный текст] : пособие для студентов вузов по направлению 35.03.04 «Агрономия», профиль «Агрономия», «Защита растений», «Плодоовощеводство» и 35.04.04 «Агрономия» (магистр) / А. Н. Есаулко, В. В. Агеев, А. И. Подколзин, В. Г. Сычев, Ю. И. Гречишкина, О. Ю. Лобанкова, А. А. Беловолова, М. С. Сигида, С. А. Коростылёв, Е. В. Голосной, Н. В. Громова, А. В. Воскобойников, Е. А. Саленко, А. Ю. Ожередова ; СтГАУ. 4-е изд., перераб. и доп. Ставрополь, 2017. 2,20 МБ. ISBN 5-9596-0148-6.
- 3. ЭБС «Лань»: Семендяева, Н.В. Инструментальные методы исследования почв и растений [Электронный ресурс] : учебно-методическое пособие / Н.В. Семендяева, Л.П. Галеева, А.Н. Мармулев. Электрон. дан. Новосибирск : НГАУ, 2013. 116 с. Режим доступа:

https://e.lanbook.com/book/44515.

- 4. ЭБ "Труды ученых СтГАУ": Агрохимическое обследование и мониторинг почвенного плодородия [электронный полный текст]: учеб. пособие по землеустройству и кадастрам / А. Н. Есаулко, В. В. Агеев, Л. С. Горбатко, А. И. Подколзин, О. Ю. Лобанкова, Ю. И. Гречишкина, В. И. Радченко, О. А. Подколзин, Н. В. Громова, М. С. Сигида, С. А. Коростылев, Е. В. Голосной, С. В. Динякова, Е. А. Устименко, А. Ю. Фурсова, А. В. Воскобойников; СтГАУ. Ставрополь: АГРУС, 2013. 2,21 МБ.
- 5. Агрохимическое обследование и мониторинг почвенного плодородия : учеб. пособие для студентов вузов / А. Н. Есаулко [и др.] ; СтГАУ. Ставрополь : АГРУС, 2013. 352 с. (Гр. УМО).(предыдущие издания)
- 6. Агеев, В. В. Агрохимия (Южно-Российский аспект): учебник для студентов вузов по агрон. специальностям. Т. 1: Питание растений. Свойства почвы в связи с питанием растений и применением удобрений / под ред. В. В. Агеева. Ставрополь: СтГАУ, 2005. 488 с.: ил. (Гр. МСХ РФ).
- 7. Агеев, В. В. Агрохимия (Южно-Российский аспект) : учебник для студентов вузов по агрон. специальностям. Т. 2 : Удобрения. Системы удобрения. Экология / под ред. В. В. Агеева. Ставрополь : СтГАУ, 2006. 480 с. : ил. (Гр. МСХ РФ).
- 8. Ягодин, Б. А. Агрохимия : учебник для вузов / под ред. Б. А. Ягодина. М. : Колос, 2002. 584 с.: ил.
- 9. Муравин, Э. А. Агрохимия : учебник для бакалавров по направлению "Агрономия" / Э. А. Муравин, Л. В. Ромодина, В. А. Литвинский. Москва : Академия, 2014. 304 с. (Высшее образование. Бакалавриат. Гр. УМО).
- 10. Юдин, Ф. А. Методика агрохимических исследований: учеб. пособие для высш. с.-х. учеб. заведений. 2-е изд., перераб. и доп. М.: Колос, 1980. 366 с.: ил. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).
- 11. Минеев, В. Г. . Агрохимия : учебник для вузов по направлению 510700 "Почвоведение" и специальности 013000 "Почвоведение". 2-е изд., перераб. и доп. М. : Изд-во МГУ; КолосС, 2004. 720 с. : ил. (Классический университетский учебник. Гр.).
 - 12. Плодородие (периодическое издание)
 - 13. Агрохимия (периодическое издание)
 - 14. Проблемы агрохимии и экологии (периодическое издание)
- 15. Электронная библиотека диссертаций Российской государственной библиотеки http://elibrary.rsl.ru/
 - 16. Международная реферативная база данных WebofScience. http://wokinfo.com/russian/
 - 17. Международная реферативная база данных SCOPUS. http://www.scopus.com/
- 18. Международная база данных ProQuest AGRICULTURAL AND ENVIRONMENTAL SCIENCE DATABASE https://search.proquest.com/agricenvironm/
- 11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства и информационных справочных систем (при необходимости).
- 11.1 Перечень лицензионного программного обеспечения
- 1. Kaspersky Total Security Антивирус
- 2. Microsoft Windows Server STDCORE AllLngLicense/Software AssurancePack Academic OLV 16Licenses LevelE AdditionalProduct CoreLic 1Year Серверная операционная система
- 11.3 Перечень программного обеспечения отечественного производства
- 1. Kaspersky Total Security Антивирус

При осуществлении образовательного процесса студентами и преподавателем используются следующие информационно справочные системы: СПС «Консультант плюс», СПС «Гарант».

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

№ п/п	Наименование специальных помещений и помещений для самостоятельной работы	Номер аудитор ии	Оснащенность специальных помещений и помещений для самостоятельной работы
1	Учебная аудитория для проведения занятий всех типов (в т.ч. лекционного, семинарского, практической подготовки обучающихся), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	58	: , Acer - 1, 25
2	, - , :	214	. , 100 - 56 ., 1 ., -1 ., Wi-Fi , , . , . , . , . , . , . , . , . , .

13. Особенности реализации дисциплины лиц с ограниченными возможностями здоровья

Обучающимся с ограниченными возможностями здоровья предоставляются специальные учебники и учебные пособия, иная учебная литература, специальные технические средства обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего обучающимся необходимую техническую помощь, а также услуги сурдопереводчиков и тифлосурдопереводчиков.

- а) для слабовидящих:
- на промежуточной аттестации присутствует ассистент, оказывающий студенту необходимую техническую помощь с учетом индивидуальных особенностей (он помогает занять рабочее место, передвигаться, прочитать и оформить задание, в том числе записывая под диктовку);
- задания для выполнения, а также инструкция о порядке проведения промежуточной аттестации оформляются увеличенным шрифтом;
 - задания для выполнения на промежуточной аттестации зачитываются ассистентом;
 - письменные задания выполняются на бумаге, надиктовываются ассистенту;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- студенту для выполнения задания при необходимости предоставляется увеличивающее устройство;
 - в) для глухих и слабослышащих:
- на промежуточной аттестации присутствует ассистент, оказывающий студенту необходимую техническую помощь с учетом индивидуальных особенностей (он помогает занять рабочее место, передвигаться, прочитать и оформить задание, в том числе записывая под диктовку);
 - промежуточная аттестация проводится в письменной форме;
- обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости поступающим предоставляется звукоусиливающая аппаратура индивидуального пользования;
 - по желанию студента промежуточная аттестация может проводиться в письменной форме;
- д) для лиц с нарушениями опорно-двигательного аппарата (тяжелыми нарушениями двигательных функций верхних конечностей или отсутствием верхних конечностей):
- письменные задания выполняются на компьютере со специализированным программным обеспечением или надиктовываются ассистенту;
 - по желанию студента промежуточная аттестация проводится в устной форме.

26.07.2017 г. № 701).	
Автор (ы) 	доц., ксхн Громова Наталья Викторовна
Рецензенты	проф., дсхн Власова О.И.
	доц., ксхн Селиванова М.В.
заседании Кафедра агрохимии и соответствующей требованиям Садоводство	иплины «Инструментальные методы исследований» рассмотрена на и физиологии растений протокол № 1 от 25.08.2025 г. и признана ФГОС ВО и учебного плана по направлению подготовки 35.04.05
заседании учебно-методической	Ожередова Алена Юрьевна иплины «Инструментальные методы исследований» рассмотрена на комиссии Институт аграрной генетики и селекции протокол № 1 от ответствующей требованиям ФГОС ВО и учебного плана по 5 Садоводство

Руководитель ОП

Рабочая программа дисциплины «Инструментальные методы исследований» составлена на

основе Федеральный государственный образовательный стандарт высшего образования - магистратура по направлению подготовки 35.04.05 Садоводство (приказ Минобрнауки России от