ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Центр опережающей профессиональной подготовки

УТВЕРЖДАЮ:

Проректор по дополнительному

ванию

Фена О Ставропольский ГАУ,

профессор

Ульт -О.М. Лисова

10» октябуя 2025 г.

Категория обучающихся:

лица, имеющие среднее образование и/или с профессиональное образование

среднее

общее

Дополнительная профессиональная программа повышения квалификации «Аддитивные технологии в АПК»

Дополнительная профессиональная программа повышения квалификации «**Аддитивные технологии в АПК**» рассмотрена и утверждена учебнометодической комиссией Центра опережающей профессиональной подготовки (протокол № 13 от 10.10.2025 г.).

Нормативные правовые основания разработки программы:

- Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Постановление Правительства Российской Федерации от 11 октября 2023 г. № 1678 «Об утверждении Правил применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
- Приказ Минобрнауки России от 25 февраля 2025 г. № 169 «О реализации проекта «Цифровые кафедры» образовательными организациями высшего образования участниками программы стратегического академического лидерства «Приоритет-2030»;
- Приказ Минобрнауки России от 1 июля 2013 г. № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам»;
- Методические рекомендации по разработке основных профессиональных образовательных программ и дополнительных профессиональных программ с учетом соответствующих профессиональных стандартов (утв. Минобрнауки России 22 января 2015 г. № ДЛ-1/05вн);
- Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 09.03.02 Информационные системы и технологии (уровень бакалавриата), утвержденного приказом Минобрнауки России от 19 сентября 2017 г. № 926.

Программа реализуется в рамках требований профессиональных стандартов:

- «06.001 Программист», регистрационный № 4, трудовые функции: А/01.3 Формализация и алгоритмизация поставленных задач для разработки программного кода, А/02.3 Написание программного кода с использованием языков программирования, определения и манипулирования данными в базах данных, утвержденный приказом Министерства труда и социальной защиты РФ от 20 июля 2022 № 424н,
- «40.159 Специалист по аддитивным технологиям», регистрационный № 962, трудовые функции: А/02.4- Ведение учетной документации по технологиям аддитивного производства, В/01.5 Проектирование модели несложного изделия, изготавливаемого методами аддитивных технологий, утвержденного приказом Министерства труда и социальной защиты РФ от 5 октября 2020 года № 697н.

Трулоемкость (час)

1 by Addinkoeth (lac)					
Дистанционные занятия,	10				
из них:					
- Лекции	8				
- Практические, лабораторные и семинарские занятия	2				
Самостоятельная работа слушателей	4				
Итоговая аттестация	2				
ВСЕГО:	16				

Пояснительная записка

Аддитивные технологии в АПК - это не просто следование технологическому тренду, а стратегическая необходимость. Она напрямую способствует повышению производительности, устойчивости и конкурентоспособности агропромышленного комплекса, обеспечивая его готовность к вызовам современности.

Аддитивные технологии направлены на решение оперативных задач АПК:

- 1. Сокращение времени простоя техники.
- 2. Создание специализированного оборудования.
- 3. Производство функциональных устройств.

Аддитивные технологии содействуют стратегическому развитию и инновациям:

- 1. Импортозамещение и технологический суверенитет.
- 2. Развитие точного и устойчивого земледелия.
- 3. Стимулирование научных исследований.

Таким образом, актуальность программы «Аддитивные технологии в АПК» обусловлена комплексом вызовов, стоящих перед современным агропромышленным комплексом, и уникальными возможностями, которые открывают 3D-технологии для их преодоления. Эти технологии, подразумевающие послойное создание объектов, трансформируют традиционные подходы к производству, ремонту и развитию в сельском хозяйстве.

По окончании курса обучающийся будет способен:

- 1. Анализировать потенциал использования АТ для оптимизации, прототипирования и производства в различных отраслях АПК (растениеводство, животноводство, пищевая промышленность, сельхозмашиностроение).
- 2. Проектировать и создавать функциональные 3D-модели изделий с учетом технологических ограничений аддитивного производства и специфических требований АПК (износостойкость, контакт с пищевыми продуктами, воздействие агрессивных сред).
- 3. Выбирать оптимальную аддитивную технологию (FDM, SLA, SLS и др.) и материалы для реализации конкретной технической или технологической задачи в АПК.
- 4. Подготавливать цифровые модели к печати (выполнять слайсинг, генерировать G-код) и управлять ключевыми параметрами процесса для достижения требуемого качества и эксплуатационных характеристик изделия.
- 5. Автоматизировать и параметризировать процессы 3D-моделирования с использованием языка Python для массового создания, оптимизации и адаптации изделий под изменяющиеся условия АПК.

1. Цель реализации программы

Целью реализации представленной программы является формирование целостной системы знаний и практических компетенций по применению аддитивных технологий (AT) для решения актуальных задач в агропромышленном комплексе, от проектирования цифровой модели до внедрения готового изделия в производственный процесс.

2. Планируемые результаты обучения

Формируемые	Показатели освоения компетенции					
компетенции	Знания	Умения	Практический опыт			
Самостоятельно	3 1 Знает основы	У 1 Умеет	ОПД 1 Владеет			
открывает и	создания 3D-	использовать	навыками открывает			
просматривает	моделей	простейшие	и просматривает			
объемные модели.		программы для	объемные модели.			
Использует		создания 3D-	Использует			
простейшие		моделей	простейшие			
программы для			программы для			
создания 3D-			создания 3D-моделей			
моделей						
Самостоятельно	3 2 Знает основы	У 2 Умеет работать с	ОПД 2 Владеет			
работает с	создания 3D-	программами для	навыками работаеты			
программами для	моделей изделий и	3D-моделирования и	с программами для			
3D-моделирования.	подготовки модель	подготовки модель	3D-моделирования.			
Готовит модель для	для 3D-печати	для 3D-печати	Готовит модель для			
3D-печати			3D-печати			
Применяет языки	3 3 Знает	У 3 Умеет	ОПД 3 Владеет			
программирования	теоретические	применять языки	навыками			
для решения	основы	программирования	применения языков			
профессиональных	применения	PHP, JavaScript,	программирования			
задач под контролем	языков	Python в сфере 3D-	(PHP, JavaScript,			
более опытных	программирования	моделирования	Python) для решения			
специалистов	PHP, JavaScript,		профессиональных			
	Python в сфере 3D-		задач в сфере 3D-			
	моделирования.		моделирования			

3. Учебный план

дополнительной профессиональной программы повышения квалификации «Аддитивные технологии в АПК»

Категория слушателей: лица, имеющие среднее общее образование и/или среднее профессиональное образование.

Срок обучения: 16 часов (1 неделя)

Форма обучения: очная (с применением дистанционных образовательных

технологий)

TOAIR	53101 HH)					технологии)								
			0	ганционное бучение гом числе)										
№ п/п	пазленов / молупеи /		Лекции	Практические занятия, лабораторные, семинары	CPC	Промежуточная / Итоговая аттестация								
1.	Цифровизация в АПК	4	2	-	2	-								
2.	Создание 3Д-модели изделия	4	2	-	2	-								
3.	Изготовление деталей изделия на станках с ЧПУ	4	2	2	-	-								
4.	Программирование на языке Python	2	2	-	-									
	Итоговая аттестация	2	-			Зачет								
	Итого:	16	8	8 2										

3.1. Учебно-тематический план

дополнительной профессиональной программы повышения квалификации «Аддитивные технологии в АПК»

			О	ганционное бучение гом числе)			
№ п/п	Наименование разделов / модулей / тем	Всего (час)	Лекции	Практические занятия, лабораторные, семинары	CPC	Промежуточная / Итоговая аттестация	
1.	Цифровизация в АПК	4	2	-	2	-	
2.	Создание 3Д-модели изделия	4	2	-	2	-	
3.	Изготовление деталей изделия на станках с ЧПУ	4	2	2	-	-	
4.	Программирование на языке Python	2 2		-	-		
	Итоговая аттестация	2	-	-	-	Зачет	
	Итого:	16	8	8 2			

3.2. Учебная программа

дополнительной профессиональной программы повышения квалификации «Аддитивные технологии в АПК»

Тема 1. Цифровизация в АПК (4 часа)

Образовательная цель: формирование у слушателей системного понимания концепции «Цифрового сельского хозяйства» (Digital Agriculture), его ключевых технологий и практических возможностей для повышения эффективности, устойчивости и прибыльности агробизнеса.

Учебные задачи:

- сформировать понятийный аппарат: определить и разграничить ключевые концепции («Точное земледелие», «Интернет вещей (ІоТ)», «Большие данные (Big Data)», «Искусственный интеллект (ИИ)», «Цифровой двойник» предприятия);
- изучить состав и назначение современных цифровых технологий в АПК;
- проанализировать архитектуру и компоненты единой цифровой экосистемы сельхозпредприятия (от поля до офиса);
- научиться анализировать преимущества и ограничения различных технологий для решения конкретных агрономических и экономических задач;
- сформировать умение проводить предварительный анализ целесообразности внедрения цифровых технологий;
- проанализировать глобальные тренды и перспективы развития AgTech;

- оценить влияние цифровизации на кадровые потребности АПК и формирование новых профессий (Data Scientist в сельском хозяйстве, оператор БПЛА, IT-агроном);
- обсудить социальные, экологические и экономические последствия перехода к цифровому сельскому хозяйству.

Перечень тем для дистанционного обучения

Номер темы	Наименование темы							
1.	Лекция. Цифровиза	Лекция. Цифровизация в АПК						
	Самостоятельная	амостоятельная работа. Соврем						
	технологии в сельско	ехнологии в сельском хозяйстве						

Тема 2. Создание 3Д-модели изделия (4 часа)

Образовательная цель: формирование у слушателей компетенции по самостоятельному созданию и подготовке функциональной 3D-модели типового изделия для агропромышленного комплекса, готовой к аддитивному производству, с учетом технологических и отраслевых особенностей.

Учебные задачи:

- сформировать понимание связи дизайна изделия с аддитивными технологиями и условиями эксплуатации в АПК;
- освоить базовые принципы и инструменты параметрического моделирования в выбранной САПР (например, Fusion 360, Kompas-3D, T-FLEX);
- применить полученные навыки для моделирования конкретного изделия, востребованного в АПК;
- научиться преобразовывать созданную 3D-модель в формат, пригодный для печати на 3D-принтере;
- освоить базовые принципы работы со слайсером (программа для подготовки G-кода) для оптимизации процесса печати.

Перечень тем для дистанционного обучения

Номер темы	Наименование темы							
2.	Лекция. Создание 3Д-модели изделия							
	Самостоятельная работа. Базовые принципы и							
	инструменты параметрического моделирования в выбранной							
	САПР							

Тема 3. Изготовление деталей изделия на станках с ЧПУ (4 часа)

Образовательная цель: формирование у слушателей системного понимания полного цикла изготовления детали на станках с ЧПУ — от конструкторской документации до готового изделия, и практических навыков подготовки управляющих программ для фрезерной и токарной обработки.

Учебные задачи:

- усвоить принципы работы, классификацию и возможности оборудования с ЧПУ;
- научиться составлять последовательный технологический процесс изготовления детали;
- освоить базовые принципы создания управляющих программ в САМ-системе;
- научиться проверять УП и подготавливать станок к работе.

Перечень тем для дистанционного обучения

Номер темы	Наименование темы
3.	Лекция. Изготовление деталей изделия на станках с ЧПУ
	Практическое занятие. Технологический процесс
	изготовления детали

Тема 4. Программирование на языке Python (2 часа)

Образовательная цель: формирование у слушателей базовых навыков программирования на Python для автоматизации и параметризации процессов 3D-моделирования, применяемых в агропромышленном комплексе, с акцентом на интеграцию с аддитивными технологиями.

Учебные задачи:

- усвоить фундаментальные понятия программирования и принципы работы Python;
- научиться писать и исполнять простые программы на Python;
- понять роль Python в автоматизации и параметризации 3D-моделирования;
- разработать простой скрипт для автоматизации задачи в выбранном 3Dпакете.

Перечень тем для дистанционного обучения

Номер темы	Наименование темы
4.	Лекция. Программирование на языке Python

4. Организационно-педагогические условия

К проведению занятий по программе повышения квалификации допускаются штатные преподаватели вуза (совместители внутренние и внешние) с соответствующей квалификацией преподаваемых дисциплин, а также преподаватели, привлеченные по договору возмездного оказания образовательных услуг физическим лицом, имеющих среднее профессиональное или высшее образование и стаж работы не менее 3 лет в сфере преподаваемых дисциплин.

4.1. Материально-технические условия реализации программы

Наименование специализированных аудиторий, кабинетов, лабораторий	Вид занятий	Наименование оборудования, программного обеспечения
Образовательная	Лекции	Персональный компьютер с
платформа	Практические	доступом к сети Интернет
https://edu.copp26.ru/	занятия	
	Самостоятельн	
	ая работа	

4.2. Календарный учебный график

Период обучения (недели/дни)*	Наименование модуля (раздела, темы)			
1 день	Тема 1. Цифровизация в АПК (4 часа)			
2 день	Тема 2. Создание 3Д-модели изделия (4 часа)			
3 день	Тема 3. Изготовление деталей изделия на станках с ЧПУ (4 часа)			
4 день	Тема 4. Программирование на языке Python (2 часа) Итоговая аттестация (2 часа)			
*Точный порядок реализации модулей (дисциплин) обучения определяется в расписании занятий				

5. Учебно-методическое обеспечение программы

Учебно-методическое обеспечение программы включает:

- рабочую программу,
- онлайн-курс «Аддитивные технологии в АПК» https://edu.copp26.ru/course/view.php?id=6209 (глоссарий, видеолекции, видео практических занятий, презентационный материал по изучаемым темам, конспекты лекций, методические указания к практическим занятиям, методические указания для самостоятельной работы, итоговое тестирование).

6. Оценка качества освоения программы

Оценка качества освоения программы включает итоговую аттестацию слушателей.

6.1 Форма аттестации

Итоговая аттестация - зачёт проводится в виде тестирования. Оценка качества освоения программы осуществляется аттестационной комиссией. По результатам итоговой аттестации выставляется отметка по двухбалльной системе: «зачтено» или «не зачтено». Зачет получают слушатели, правильно ответившие на 65% тестовых вопросов.

Слушатель считается аттестованным, если показал освоение планируемых результатов (умения, навыки, компетенции), предусмотренных программой.

6.2 Оценочные средства

Перечень тестовых заданий на итоговую аттестацию

- 1. Кто изобрёл первую технологию 3D-печати и в каком году?
 - А. Стив Джобс, 1985 г.
 - В. Генри Форд, 1920 г.

- С. Чарльз Халл, 1983 г.
- D. Илон Маск, 2005 г.
- 2. Что означает аббревиатура FDM в контексте аддитивных технологий?
 - А. Фотополимерная детальная модель
 - В. Функциональное детальное моделирование
 - С. Послойное выращивание изделия из пластиковой нити
 - D. Формирование деталей методом
- 3. Какой формат файла используется для передачи 3D-модели на 3D-принтер после обработки в слайсере?
 - A. PDF
 - B. STL
 - С. G-код
 - D. DXF
- 4. Какое из перечисленных программных решений относится к инженерному 3D-моделированию и поддерживает ГОСТ и ЕСКД?
 - A. Blender
 - B. Maya
 - С. КОМПАС-3D
 - D. Cinema 4D
- 5. Какое требование обязательно для эскиза при создании твёрдотельной модели в КОМПАС-3D?
 - А. Эскиз должен содержать цветные линии
 - В. Эскиз должен быть выполнен вспомогательными линиями
 - С. Контур эскиза должен быть замкнутым
 - D. Эскиз должен содержать не менее 10 геометрических примитивов
- 6. Какое изделие появляется при сканировании QR-кода в лекции «Создание создании 3D-модели изделия»?
 - А. Шуруповёрт
 - В. Электрический секатор
 - С. Корпус диодного моста
 - D. Серверный шкаф
- 7. Что такое алгоритм?
 - А. Программа для рисования схем
 - В. Последовательность действий, направленных на решение задачи
 - С. Команда для компьютера
 - D. Язык программирования

- 8. Для чего используется программа Draw.io?
 - А. Для написания кода
 - В. Для создания и выполнения программ
 - С. Для построения блок-схем алгоритмов
 - D. Для проверки орфографии
- 9. Какой элемент обозначает начало и конец алгоритма на блок-схеме?
 - А. Прямоугольник
 - В. Ромб
 - С. Эллипс (овал)
 - D. Треугольник
- 10. Какую роль выполняет среда разработки РуСharm?
 - А. Помогает рисовать схемы
 - В. Предназначена для написания, запуска и отладки программ на Python
 - С. Используется для работы с таблицами
 - D. Для просмотра изображений
- 11. Почему полезно сначала нарисовать блок-схему, а потом писать код?
 - А. Потому что блок-схема заменяет код
 - В. Чтобы заранее продумать логику программы и избежать ошибок
 - С. Потому что так быстрее работает программа
 - О. Чтобы программа выглядела красивее
- 12. Что такое "Stock Top Ofset"?
 - А. отступ сверху заготовки
 - В. отступ снизу заготовки
 - С. отступ сбоку заготовки
- 13. Что означают красные линии?
 - А. траекторию движения фрезы в процессе резанья
 - В. траекторию врезания инструмента
 - С. траектория перехода от одной области обработки к другой
- 14. За что отвечает параметр "Multiple Depths"
 - А. за глубину резанья за один проход
 - В. за ширину резанья за один проход
 - С. за глубину и ширину резанья за один проход
- 15. Для обработки каких материалов предназначен станок Roland MDX 40 A?
 - А. древесина и модельный пластик
 - В. алюминий и сталь
 - С. любых

- 16. Почему стол станка ЧПУ выполнен из куска МДФ?
 - А. это жертвенный материал, который не жалко испортить
 - В. к МДФ лучше клеиться заготовка
 - С. заготовку проще снять со стола из МДФ
- 17. Куда направлена ось Y в станоке Roland MDX 40 A?
 - А. вправо
 - В. в глубь станка
 - С. влево
- 18. Субтрактивный метод производства это
- А. изготовление путем послойного добавления материала
- В. изготовление путем последовательного удаления лишнего материала
- 19. Какая команда используется для создания основного тела модели «крышка» в КОМПАС-3D?
 - А. Вырезать выдавливанием
 - В. Элемент вращения
 - С. Элемент выдавливания
 - D. Кинематическая операция
- 20. Каким образом в модели «крышка» создаются шесть одинаковых отверстий, равномерно расположенных по окружности?
 - А. Зеркальное отражение
 - В. Копия по окружности
 - С. Линейный массив
 - D. Повтор по траектории
- 21. Для чего в КОМПАС-3D используется команда «Усечь кривую» при построении эскиза?
 - А. Для создания фасок
 - В. Для удаления лишних фрагментов геометрии
 - С. Для измерения длины отрезков
 - D. Для сглаживания углов
- 22. Какой параметр обязательно задаётся при создании листового тела в KOMПAC-3D?
 - А. Цвет материала
 - В. Толщина листа
 - С. Плотность металла
 - D. Угол поворота
- 23. Какой из перечисленных способов НЕ относится к методам создания сгибов в листовом материале?
 - А. Сгиб по эскизу

- В. Сгиб по ребру
- С. Сгиб по линии
- D. Сгиб по спирали
- 24. Почему перед созданием выреза в уже согнутой листовой детали необходимо разогнуть сгиб?
 - А. Чтобы ускорить расчёт модели
 - В. Чтобы вырез был сделан строго по толщине листа в развёрнутом виде
 - С. Чтобы изменить цвет детали
 - D. Чтобы уменьшить размер файла
- 25. Что такое «освобождения» при построении сгибов в листовой детали?
 - А. Дополнительные отверстия для крепления
 - В. Пазы, предотвращающие разрыв материала при сгибании
 - С. Элементы оформления чертежа
 - D. Вспомогательные плоскости для построения эскизов

Ключ-тест к зачету (тестирование)

N_{2}	Ответ	N_{2}	Ответ	N_{2}	Ответ	№	Ответ	N_{2}	Ответ
вопроса									
1	C	6	В	11	В	16	A	21	В
2	C	7	В	12	A	17	В	22	В
3	C	8	C	13	В	18	В	23	D
4	C	9	C	14	A	19	C	24	В
5	C	10	В	15	A	20	В	25	В

7. Список рекомендуемой литературы

- 1. Алаева, Т. Ю. Инструментальные средства программирования. Компас-3D: учебно-методическое пособие / Т. Ю. Алаева. пос. Караваево: КГСХА, 2020. 62 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/171659 (дата обращения: 26.09.2025). Режим доступа: для авториз. пользователей.
- 2. Бучельникова, Т. А. Основы 3D моделирования в программе Компас : учебно-методическое пособие / Т. А. Бучельникова. Тюмень : ГАУ Северного Зауралья, 2021. 60 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/179203 (дата обращения: 26.09.2025). Режим доступа: для авториз. пользователей.
- 3. Глазунов, К. О. Применение прикладных библиотек при создании 3D-модели детали в САПР "Компас": практическое пособие : учебное пособие / К. О. Глазунов, Е. А. Солодухин, В. В. Шкварцов. Санкт-Петербург : БГТУ "Военмех" им. Д.Ф. Устинова, 2020. 33 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/172240 (дата обращения: 26.09.2025). Режим доступа: для авториз. пользователей.Начертательная геометрия.

- 4. Задание «Резьба» (в программе Компас 3D V13) : методические указания / составители Л. Л. Карманова [и др.]. Челябинск : ЮУрГУ, 2015. 52 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/154129 (дата обращения: 26.09.2025). Режим доступа: для авториз. пользователей.
- 5. Ковалев, А. С. Компьютерная графика 3D-моделирование КОМПАС-3D (технологии выполнения чертежей и деталей: учебное пособие / А. С. Ковалев. Орел: ОрелГАУ, 2013. 84 с. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/71328 (дата обращения: 26.09.2025). Режим доступа: для авториз. пользователей.
- 6. Кудрина, Е. В. Основы алгоритмизации и программирования на языке С#: учебное пособие для среднего профессионального образования / Е. В. Кудрина, М. В. Огнева. Москва: Издательство Юрайт, 2020. 322 с. (Профессиональное образование). ISBN 978-5- 534-10772-2.
- 7. Малышевская, Л. Г. Основы моделирования в среде автоматизированной системы проектирования «КОМПАС 3D» : учебное пособие / Л. Г. Малышевская. Железногорск : СПСА, 2017. 72 с. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/170717 (дата обращения: 26.09.2025). Режим доступа: для авториз. пользователей.
- 8. Немцова, Т. И. Компьютерная графика и web-дизайн : учебное пособие / Т.И. Немцова, Т.В. Казанкова, А.В. Шнякин ; под ред. Л.Г. Гагариной. Москва : ИНФРА-М, 2026. 400 с. + Доп. материалы [Электронный ресурс]. (Высшее образование). ISBN 978-5-16-021098-8. Текст : электронный. URL: https://znanium.ru/catalog/product/2213704
- 9. Подбельский, В. В. Программирование. Базовый курс С#: учебник для вузов / В. В. Подбельский. Москва: Издательство Юрайт, 2020. 369 с. (Высшее образование). ISBN 978-5-534-10616-9.
- 10. Савельев, Ю. Ф. Инженерная компьютерная графика. Твердотельное моделирование объектов в среде «Компас-3D»: учебное пособие / Ю. Ф. Савельев, Н. Ю. Симак. Омск: ОмГУПС, 2017. 77 с. ISBN 978-5- 949-41181-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/129207 (дата обращения: 26.09.2025). Режим доступа: для авториз. пользователей.

Составитель программы:

Сидельников Дмитрий Алексеевич, канд. техн. наук, доцент, зам. руководителя по взаимодействию с партнёрами Центра опережающей профессиональной подготовки Ставропольского края