ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Центр опережающей профессиональной подготовки

УТВЕРЖДАЮ:

Проректор по дополнительному

ванию

Фрыс Ставропольский ГАУ,

профессор

Уштер -О.М. Лисова

;10 жүйбүй 2025 г.

Категория обучающихся:

лица, имеющие среднее образование и/или общее среднее

профессиональное образование

Дополнительная профессиональная программа повышения квалификации «Цифровые технологии БПЛА-мониторинга и дистанционного зондирования в АПК»

Дополнительная профессиональная программа повышения квалификации «**Цифровые технологии БПЛА-мониторинга и дистанционного зондирования в АПК**» рассмотрена и утверждена учебно-методической комиссией Центра опережающей профессиональной подготовки (протокол № 13 от 10.10.2025 г.).

Нормативные правовые основания разработки программы:

- Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Постановление Правительства Российской Федерации от 11 октября 2023 г. № 1678 «Об утверждении Правил применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
- Приказ Минобрнауки России от 25 февраля 2025 г. № 169 «О реализации проекта «Цифровые кафедры» образовательными организациями высшего образования участниками программы стратегического академического лидерства «Приоритет-2030»;
- Приказ Минобрнауки России от 1 июля 2013 г. № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам»;
- Методические рекомендации по разработке основных профессиональных образовательных программ и дополнительных профессиональных программ с учетом соответствующих профессиональных стандартов (утв. Минобрнауки России 22 января 2015 г. № ДЛ-1/05вн);
- Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 35.03.04 Агрономия (уровень бакалавриата), утвержденного приказом Минобрнауки России от 27 июля 2017 г. № 699:
- Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 35.03.06 Агроинженерия (уровень бакалавриата), утвержденного приказом Минобрнауки России от 27 июля 2017 г. № 709;

Программа реализуется в рамках требований профессионального стандарта:

— «17.071 Специалист по эксплуатации беспилотных авиационных систем, включающих в себя одно или несколько беспилотных воздушных судов с максимальной взлётной массой 30 кг и менее», регистрационный № 1196, трудовые функции: подготовка к полетам беспилотных авиационных систем, включающих в себя одно или несколько беспилотных воздушных судов с максимальной взлетной массой 30 килограммов и менее (В/01.3); управление (контроль) полетом одного судна или нескольких беспилотных воздушных судов с максимальной взлетной массой 30 килограммов и менее (В/02.3), утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 14.09.2022 № 526н.

Трудоемкость (час)

Дистанционные занятия,	10
из них:	
- Лекции	4
- Практические, лабораторные и семинарские занятия	6
Самостоятельная работа слушателей	4
Итоговая аттестация	2
ВСЕГО:	16

Пояснительная записка

Современное сельское хозяйство переживает этап цифровой трансформации, где ключевую роль играют технологии точного земледелия. Беспилотные авиационные системы (БАС) с массой до 30 кг стали эффективным инструментом для оперативного мониторинга больших площадей, диагностики состояния посевов и принятия управленческих решений.

Данная программа разработана в ответ на потребности агропромышленного комплекса в высококвалифицированных специалистах, способных не только управлять БПЛА, но и профессионально обрабатывать данные дистанционного зондирования Земли (ДЗЗ) для решения прикладных сельскохозяйственных задач.

Программа составлена с учетом требований профессионального стандарта «17.071 Специалист по эксплуатации беспилотных авиационных систем, включающих в себя одно или несколько беспилотных воздушных судов с максимальной взлётной массой 30 кг и менее» (утвержден приказом Минтруда России от 14.09.2022 № 526н) и направлена на формирование у слушателей актуальных компетенций в области применения БАС в агросфере, а так же смежные компетенции, востребованные в сельском хозяйстве:

- Обработка и анализ данных ДЗЗ: Работа с сырыми данными, полученными с БПЛА (изображения в видимом, ближнем инфракрасном и тепловом диапазонах). Создание ортомозаик, карт вегетационных индексов (NDVI, NDRE и др.), карт рельефа (ЦМР).
- Интерпретация результатов для агрономии: Диагностика состояния посевов, выявление участков с стрессом (водным, азотным, болезнями, вредителями), оценка густоты стояния растений, планирование дифференцированного внесения удобрений и СЗР, мониторинг орошения.

1. Цель реализации программы

Целью программы является формирование у слушателей системных знаний и применению цифровых практических навыков ПО БПЛА И технологий дистанционного зондирования для эффективного решения задач в области точного земледелия и мониторинга сельскохозяйственных земель. В результате обучения по программе у слушателя формируется комплекс знаний, умений и навыков соответствующих, необходимым компетенциям по стандарту «17.071 Специалист по эксплуатации беспилотных авиационных систем, включающих в себя одно или несколько беспилотных воздушных судов с максимальной взлётной массой 30 кг и менее». В том числе знания нормативно-правовой базы в области применения БАС гражданского назначения, устройства, принципы работы и характеристики БПЛА

мультироторного и самолетного типа, виды и принципы работы полезной нагрузки для сельскохозяйственного мониторинга, основы дистанционного зондирования Земли и методы фотограмметрической обработки данных.

2. Планируемые результаты обучения

Формируемые	Показатели освоения компетенции					
компетенции	Знания	Умения	Практический опыт			
Формируемые компетенции Осуществляет эксплуатацию автоматизированных систем планирования и оперативного управления по эксплуатации пилотируемых и беспилотных воздушных судов	Знания Устройство, принципы работы и характеристики БПЛА мультироторного и самолетного типа. Виды и принципы работы полезной нагрузки для сельскохозяйствен ного мониторинга (RGB, мультиспектральн ые, тепловизионные камеры). Основы дистанционного	Умения Планировать полетные задания для сельскохозяйственн ых полей с учетом агрономических задач. Выполнять подготовку БАС к полетам и проводить полеты в соответствии с утвержденным планом. Настраивать и калибровать мультиспектральную и тепловизионную	1			
	зондирования Земли и спектрального анализа. Методы фотограмметричес кой обработки данных с БПЛА. Технику безопасности при работе с БАС. Нормативноправовая база в области применения БАС гражданского назначения.	аппаратуру. Обрабатывать полученные аэрофотоснимки в специализированном программном обеспечении (Agisoft Metashape).				

3. Учебный план

дополнительной профессиональной программы повышения квалификации «Цифровые технологии БПЛА-мониторинга и дистанционного зондирования в АПК»

Категория слушателей: лица, имеющие среднее общее образование и/или среднее профессиональное образование.

Срок обучения: 16 часов (1 неделя)

Форма обучения: очная (с применением дистанционных образовательных

технологий)

техно	гехнологий)						
			Дистанционное обучение (в том числе)				
№ п/п	Наименование разделов / модулей / тем	Всего (час)	Лекции	Практические занятия, лабораторные, семинары	CPC	Промежуточная / Итоговая аттестация	
1.	Цифровизация в АПК	4	2	-	2	-	
2.	Введение в беспилотные авиационные системы (БАС)	5	1	3	1	-	
3.	Картография, навигация и фотограмметрия в БПЛА	5	1	3	1	-	
	Итоговая аттестация	2	-	-	-	Зачет	
	Итого:	16	4	6	4		

3.1. Учебно-тематический план

дополнительной профессиональной программы повышения квалификации «Цифровые технологии БПЛА-мониторинга и дистанционного зондирования в АПК»

			Дистанционное обучение (в том числе)				
№ п/п	Наименование разделов / модулей / тем	Всего (час)	Всего		CPC	Промежуточная / Итоговая аттестация	
1.	Цифровизация в АПК	4	2	-	2	-	
2.	Введение в беспилотные авиационные системы (БАС)	5	1	3	1	-	
3.	Картография, навигация и фотограмметрия в БПЛА	5	1	3	1	-	
	Итоговая аттестация	2	-	-	-	Зачет	
	Итого:	16	4	6	4		

3.2. Учебная программа

дополнительной профессиональной программы повышения квалификации «Цифровые технологии БПЛА-мониторинга и дистанционного зондирования в АПК»

Тема 1. Цифровизация в АПК (4 часа)

Образовательная цель: формирование у слушателей системного понимания концепции «Цифрового сельского хозяйства» (Digital Agriculture), его ключевых технологий и практических возможностей для повышения эффективности, устойчивости и прибыльности агробизнеса.

Учебные задачи:

- сформировать понятийный аппарат: определить и разграничить ключевые концепции («Точное земледелие», «Интернет вещей (IoT)», «Большие данные (Big Data)», «Искусственный интеллект (ИИ)», «Цифровой двойник» предприятия);
- изучить состав и назначение современных цифровых технологий в АПК;
- проанализировать архитектуру и компоненты единой цифровой экосистемы сельхозпредприятия (от поля до офиса);
- научиться анализировать преимущества и ограничения различных технологий для решения конкретных агрономических и экономических задач;

- сформировать умение проводить предварительный анализ целесообразности внедрения цифровых технологий;
- проанализировать глобальные тренды и перспективы развития AgTech;
- оценить влияние цифровизации на кадровые потребности АПК и формирование новых профессий (Data Scientist в сельском хозяйстве, оператор БПЛА, IT-агроном);
- обсудить социальные, экологические и экономические последствия перехода к цифровому сельскому хозяйству.

Перечень тем для дистанционного обучения

Номер темы	Наименование темы								
1.	Лекция. Современные цифровые технологии в сельском								
	хозяйстве								
	Самостоятельная работа. Опыт внедрения цифровых								
	технологий в отечественное сельское хозяйство								

Тема 2. Введение в беспилотные авиационные системы (БАС) (5 часов)

Образовательная цель: формирование у слушателей системного представления о беспилотных авиационных системах, их устройстве, принципах функционирования, правовом регулировании и основных сферах применения, а также заложить базовые навыки для безопасного и осознанного использования БАС.

Учебные задачи:

- дать четкое определение БАС и ее основных компонентов (беспилотный летательный аппарат (БПЛА), наземная станция управления, система связи, наземная инфраструктура);
- классифицировать БПЛА по различным признакам: массе, дальности полета, типу конструкции (крыло вращения / крыло самолетного типа, гибридные), классам;
- изучить основные принципы полета и аэродинамики, применительно к различным типам БПЛА;
- сформировать понимание основ авиационной метеорологии и ее влияния на эксплуатацию БАС;
- изучить состав и назначение ключевых подсистем БПЛА;
- разобрать принципы работы автопилота и программного обеспечения для планирования и управления полетами;
- ознакомить с основами воздушного законодательства в сфере использования БАС;
- рассмотреть основные сферы применения БАС в современном мире;
- изучить правила полетов и процедуры получения разрешений для коммерческой и любительской деятельности.

Перечень тем для дистанционного обучения

	1 /1 /1	1	J				
Номер темы	Наименование темы						
2.	Лекция. Введение в 6	Лекция. Введение в беспилотные авиационные системы					
	(БАС)	(БАС)					
	Практическое занятие. Основы эксплуатации БПЛА						
	Самостоятельная работа. Управление БПЛА						
	мультироторного тип	a	_				

Тема 3. Картография, навигация и фотограмметрия в БПЛА (5 часов)

Образовательная цель: формирование у слушателей комплексного понимания принципов и практических навыков работы с геопространственными данными, получаемыми с помощью БПЛА, для решения прикладных задач в области картографии, навигации и фотограмметрии.

Учебные задачи:

- изучить основные принципы навигации и планирования полетов БПЛА;
- изучить физические основы аэрофотосъемки;
- освоить полный цикл фотограмметрической обработки;
- приобрести навыки работы с профессиональным ПО для фотограмметрии;
- освоить базовые методы дешифрирования и тематического картографирования на основе данных БПЛА.

Перечень тем для дистанционного обучения

Номер темы	Наименование темы						
3.	Лекция. Картография, навигация и фотограмметрия в БПЛА						
	Практическое занятие. Фотограмметрия и создание						
	ортофотопланов						
	Самостоятельная работа. Обработка изображений в						
	программах по фотограмметрии						

4. Организационно-педагогические условия

К проведению занятий по программе повышения квалификации допускаются штатные преподаватели вуза (совместители внутренние и внешние) с соответствующей квалификацией преподаваемых дисциплин, а также преподаватели, привлеченные по договору возмездного оказания образовательных услуг физическим лицом, имеющих среднее профессиональное или высшее образование и стаж работы не менее 3 лет в сфере преподаваемых дисциплин.

4.1. Материально-технические условия реализации программы

Наименование специализированных аудиторий, кабинетов, лабораторий	Вид занятий	Наименование оборудования, программного обеспечения
Образовательная	Лекции	Персональный компьютер с
платформа https://edu.copp26.ru/	Практические занятия	доступом к сети Интернет Персональный компьютер с доступом к сети Интернет Agisoft Metashape: Пакет установки,
	Самостоятельн ая работа	Персональный компьютер с доступом к сети Интернет Симулятор полета DJI Flight Simulator (бесплатная версия) https://skaitech.al/en/product/dji-flight-simulator/

4.2. Календарный учебный график

Период обучения (недели/дни)*	Наименование модуля (раздела, темы)		
1 день	Тема 1. Цифровизация в АПК (4 часа)		
2 день	Тема 2. Введение в беспилотные авиационные системы (БАС) (4 часа)		
3 день	Тема 2. Введение в беспилотные авиационные системы (БАС) (1 час) Тема 3. Картография, навигация и фотограмметрия в БПЛА (3 часа)		
4 день	Тема 3. Картография, навигация и фотограмметрия в БПЛА (2 часа) Итоговая аттестация (2 часа)		
*Точный порядок реализации модулей (дисциплин) обучения определяется в расписании занятий			

5. Учебно-методическое обеспечение программы

Учебно-методическое обеспечение программы включает:

- рабочую программу,
- онлайн-курс «Цифровые технологии БПЛА-мониторинга и дистанционного зондирования в АПК» https://edu.copp26.ru/course/view.php?id=6208 (глоссарий, видеолекции, видео практических занятий, презентационный материал по изучаемым темам, конспекты лекций, методические указания к практическим занятиям, методические указания для самостоятельной работы, итоговое тестирование).

6. Оценка качества освоения программы

Оценка качества освоения программы включает итоговую аттестацию слушателей.

6.1 Форма аттестации

Итоговая аттестация - зачёт проводится в виде тестирования. Оценка качества освоения программы осуществляется аттестационной комиссией. По результатам итоговой аттестации выставляется отметка по двухбалльной системе: «зачтено» или «не зачтено». Зачет получают слушатели, правильно ответившие на 65% тестовых вопросов.

Слушатель считается аттестованным, если показал освоение планируемых результатов (умения, навыки, компетенции), предусмотренных программой.

6.2 Оценочные средства

Перечень тестовых заданий на итоговую аттестацию

1. Какое определение БПЛА, согласно российским Правилам использования воздушного пространства, является верным?

- а) Летательный аппарат, выполняющий полёт с пилотом на борту и управляемый в полёте автоматически.
- б) Летательный аппарат, выполняющий полёт без пилота на борту и управляемый в полёте только оператором с пункта управления.
- в) Летательный аппарат, выполняющий полёт без пилота на борту и управляемый в полёте автоматически, оператором с пункта управления или сочетанием указанных способов.
- г) Летательный аппарат, выполняющий полёт без пилота на борту и управляемый исключительно автономно.

2. Какое из перечисленных утверждений является преимуществом БПЛА самолетного типа по сравнению с мультироторным?

- а) Способность зависать в воздухе для детального изучения объекта.
- б) Простота процесса взлета и посадки.
- в) Высокая дальность и время полета, способность покрывать большие территории.
- г) Высокая маневренность и возможность двигаться в любом направлении.

3. Согласно российскому законодательству, для БПЛА с максимальной взлетной массой 2 кг является ОБЯЗАТЕЛЬНЫМ:

- а) Получение сертификата лётной годности.
- б) Постановка на государственный учет в Росавиации.
- в) Наличие свидетельства внешнего пилота.
- г) Разрешение на полеты требуется в любом случае.

4. При каком условии для БПЛА массой 20 кг разрешение на полет НЕ ТРЕБУЕТСЯ?

- а) Полеты в черте населенного пункта.
- б) Полеты на высоте 200 метров.
- в) Полеты в светлое время суток на высоте до 150 метров в пределах прямой видимости.
- г) Полеты в диспетчерской зоне аэропорта.

5. Какое из перечисленных применений БПЛА в сельском хозяйстве связано с созданием точных карт полей и анализом рельефа?

- а) Внесение средств защиты растений.
- б) Поисково-спасательные работы.
- в) Создание ортофотопланов и цифровых моделей рельефа (ЦМР).
- г) Инспекция состояния ЛЭП.

6. Какая глобальная система координат является стандартом для GPS и основной для глобальной навигации?

a) ITRF2014

- б) ГСК-2011
- в) WGS 84
- г) ПЗ-90

7. Какова основная цель создания топографических карт, в отличие от чисто геодезических?

- а) Отображение границ земельных участков для кадастрового учета.
- б) Подробное изображение местности: рельефа, гидрографии, растительности и объектов.
- в) Определение магнитных склонений для навигации.
- г) Прокладка маршрутов для морской навигации.

8. Какое минимальное продольное и поперечное перекрытие аэрофотоснимков рекомендуется для последующего создания ортофотоплана?

- а) Продольное 50%, поперечное 40%
- б) Продольное 60%, поперечное 50%
- в) Продольное 70-80%, поперечное 60%
- г) Продольное 90%, поперечное 80%

9. Какова правильная последовательность этапов фотограмметрической обработки снимков в программе типа Agisoft Metashape?

- а) Построить ЦММ -> Выровнять снимки -> Построить Ортофотоплан
- б) Добавить снимки -> Построить Ортофотоплан -> Выровнять снимки
- в) Добавить снимки -> Выровнять снимки -> Построить ЦММ -> Построить Ортофотоплан
- г) Выровнять снимки -> Добавить снимки -> Построить Ортофотоплан -> Построить ЦММ

10. Что является ключевым преимуществом использования БПЛА в сельском хозяйстве, согласно материалу?

- а) Полное отсутствие необходимости в согласовании полетов.
- б) Возможность выполнять полеты в любую погоду, включать дождь и туман.
- в) Оперативность обследования больших площадей и высокая точность данных, позволяющая перейти к дифференцированному внесению удобрений.
- г) Отсутствие необходимости в предварительном планировании маршрута.

11. Сопоставьте тип БПЛА и их характерные особенности:

11. Conociabble in Dillian in na	Aapakiepiibie ocoociiiocin.
Тип БПЛА	Характерная особенность / Преимущество
1. Самолетного типа (с жестким крылом)	А. Вертикальный взлет и посадка, возможность зависания
2. Мультироторного типа (квадрокоптер)	Б. Сочетание возможностей вертикального взлета и эффективного горизонтального полета
3. Гибридной схемы (конвертоплан, винтокрыл)	В. Наивысшая энергоэффективность, дальность и время полета

12. Расположите этапы легального использования в России БПЛА массой 2 кг (попадающего в категорию от 150 г до 30 кг) в правильной логической последовательности.

- А) Назначить командира воздушного судна.
- Б) Нанести учетный номер на корпус дрона (не менее 3 раз на отделяемых элементах).
- В) Подать заявление на постановку на государственный учет в Росавиации.
- Г) Приобрести полис обязательного страхования гражданской ответственности.
- Д) Дождаться окончания срока рассмотрения заявления (10 рабочих дней).

13. Сопоставьте область применения БПЛА (из левого столбца) с конкретной задачей, которую с их помощью решают (из правого столбца).

задачей, которую с их помощью решают (из правого столбца).

Область применения

Решаемая задача

1. Сельское А. Инспекция линий электропередач (ЛЭП) и диагностика козяйство повреждений

2. Энергетика Б. Создание детальных ортофотопланов и карт для анализа состояния посевов

3. Строительство В. Мониторинг трубопроводов для выявления утечек и повреждений

4. Нефтегазовый Г. Контроль прогресса строительных работ и создание 3Dсектор моделей объектов

14. В каком порядке необходимо выполнять ключевые действия по предполетной подготовке беспилотника в день вылета?

- А) Проверить заряд и состояние аккумуляторов (БПЛА, пульта, модемов).
- Б) Провести визуальный осмотр рамы, лучей и пропеллеров на отсутствие повреждений.
- В) Убедиться в надежности крепления и проверить настройки полезной нагрузки (камеры).
- Г) Выполнить калибровку компаса и IMU (при смене локации более чем на 100 км).
- Д) Проверить работоспособность двигателей и сервоприводов.

15. Расположите этапы технологического процесса от съемки поля до применения данных для дифференцированного внесения удобрений.

- А) Планирование параллельного маршрута съемки с учетом перекрытия снимков.
- Б) Дифференцированное внесение удобрений специализированным БПЛА по построенному заданию.
- В) Выполнение аэрофотосъемки поля с БПЛА.
- Г) Обработка снимков в фотограмметрическом ПО (выравнивание, построение ЦММ и ортофотоплана).
- Д) Создание на основе ортофотоплана полетного задания (контуров полей) в

формате KML.

- 16. Расположите этапы подготовки и выполнения полета БПЛА в правильной логической последовательности, от планирования до завершения работ.
- А) Выполнение полета и проведение съемки.
- Б) Согласование плана полета с Организацией по использованию воздушного пространства (ОРВД).
- В) Обработка полученных данных и создание ортофотоплана.
- Г) Предварительное изучение района работ: рельефа, ЛЭП, запретных зон.
- Д) Предполетная подготовка: проверка метеоусловий, техсостояния БПЛА и оборудования.
- 17. БПЛА мультироторного типа расходует заряд аккумулятора со скоростью 8% в минуту при крейсерской скорости 36 км/ч. Какое максимальное расстояние сможет пролететь этот аппарат на одном заряде от 100% до 0%, если учесть, что для безопасной посадки необходимо оставить заряд в 15%? Ответ округлить до целого значения.
- 18. Для мониторинга газопровода длиной 8 км используется квадрокоптер. Полет по прямому маршруту туда и обратно составляет 16 км. При крейсерской скорости 40 км/ч квадрокоптер расходует 3% заряда аккумулятора на каждый километр пути. Какой минимальный начальный заряд аккумулятора (в %) должен иметь дрон перед вылетом, чтобы успешно вернуться к точке старта, если по технике безопасности запрещено разряжать аккумулятор ниже 20%?
- 19. Для мониторинга объектов строительства требуется ортофотоплан с разрешением (GSD) 2 см/пиксель. В распоряжении оператора БПЛА с камерой, имеющей матрицу 17.3 х 13 мм и разрешение 4000 х 3000 пикселей. Фокусное расстояние объектива 20 мм. На какой высоте должен летать дрон для достижения заданного разрешения? Ответ округлить до целого значения.
- 20. Условие: Необходимо провести мониторинг состояния железнодорожного полотна протяженностью 25 км. Ширина полосы обследования 100 м. БПЛА оснащен камерой с фокусным расстоянием 24 мм и размером матрицы 22.5 х 15 мм (разрешение 6000 х 4000 пикс). Для достижения цели GSD должен быть не более 5 см/пикс. Рассчитайте высоту полета.

Ключ-тест к итоговой аттестации (тестирование)

No	Ответ	No	Ответ	No	Ответ	No	Ответ
вопроса		вопроса		вопроса		вопроса	
1	В	2	В	3	б	4	В
5	В	6	В	7	б	8	В
9	В	10	В	11	1-в 2-а	12	ВДАБГ
					3б		
13	1-Б 2-А	14	БДГВА	15	АВГДБ	16	ГБДАВ
	3-Г 4-В						
17	6	18	68	19	93	20	320

7. Список рекомендуемой литературы

- 1. Буклагин, Д. С. Цифровые технологии в землепользовании и землеустройстве : аналит. обзор / Д. С. Буклагин, Н. П. Мишуров, Е. В. Труфляк ; МСХ РФ. Москва : Росинформагротех, 2021. 96 с. ISBN 978-5-7367-1637-1.
- 2. Цифровые технологии для обследования состояния земель сельскохозяйственного назначения беспилотными летательными аппаратами : аналит. обзор / В. Я. Гольтяпин, Н. П. Мишуров, В. Ф. Федоренко [и др.] ; МСХ РФ. Москва : Росинформагротех, 2020. 88 с. ISBN 978-5-7367-1575-6.
- 3. Беспилотные технические средства в сельском хозяйстве [Электронный ресурс] : учеб. пособие; ВО Бакалавриат / Труфляк Е. В. Санкт-Петербург : Лань, 2025. 84 с. Книга из коллекции Лань Ветеринария и сельское хозяйство. ISBN 978-5-507-51493-9.
- 4. Ануфриев, С. О. Технологии сбора пространственных данных аэрокосмическими методами [Электронный ресурс] : учеб. пособие; ВО Бакалавриат, Магистратура, Аспирантура / Ануфриев С. О., Ануфриев О. С. Санкт-Петербург : Лань, 2024. 144 с. Книга из коллекции Лань Инженерно-технические науки. ISBN 978-5-507-49736-2
- 5. Применение беспилотных летательных аппаратов (дронов) : учебник ; ВО Бакалавриат, Магистратура, Специалитет / А. Е. Белик, Р. А. Егоров, Е. В. Маршанин [и др.]; под. ред. Н. А. Максимов. Москва : КноРус, 2024. 386 с. Режим доступа: book.ru. ISBN 978-5-406-12851-0.
- 6. Фетисов, В. С. Беспилотные авиационные системы: терминология, классификация, структура [Электронный ресурс] : учеб. пособие; ВО Специалитет / Фетисов В. С.,Неугодникова Л. М. Санкт-Петербург : Лань, 2024. 132 с. Книга из коллекции Лань Инженерно-технические науки. ISBN 978-5-507-49513-9.
- 7. Золкин, А. Л. Обоснование применения современных летательных аппаратов и средств в технологических операциях сельского хозяйства : моногр. ; ВО Аспирантура, Бакалавриат, Магистратура / А. Л. Золкин, Е. В. Матвиенко, Ю. В. Осоргин. Москва : Русайнс, 2023. 120 с. Режим доступа: book.ru. ISBN 978-5-466-03140-9.
- 8. Никитина, Т. П.Программирование. Основы Руthon для инженеров [Электронный ресурс] : учеб. пособие; ВО Бакалавриат / Никитина Т. П.,Королев Л. В. 2-е изд., стер. Санкт-Петербург : Лань, 2025. 156 с. Книга из коллекции Лань Информатика. ISBN 978-5-507-50668-2.
- 9. Козин Е.В., Карманов А.Г., Карманова Н.А., Фотограмметрия СПб: Университет ИТМО, 2019.- 142c
- 10. Электродвигатели для тяжелых беспилотных летательных аппаратов = Electric motors for heavy unmanned aerial vehicles / И. М. Качанов, Н. С. Иванов, А. А. Широков [и др.]// Электротехника. 2025. № 2. С. 66-74. Библиогр.: с. 74 (21 назв.). рис., схема, табл., диагр.
- 11. Цифровой мониторинг показателей агрофитоценозов на основе беспилотных технологий[Текст] / О. А. Оленин [и др.]// Плодородие. 2019. № 5 (110). С. 56-59. Библиогр.: с. 59.
- 12. Результаты исследований окарбоначивания почв орошаемых участков по материалам дистанционного зондирования Земли / Д. В. Филиппов, И. Н. Чурсин,

- А. Д. Бояренкова, Д. Д. Рулев // Геодезия и картография. 2022. № 8. С. 39-44. Библиогр.: с. 43-44.
- 13. Использование дистанционного зондирования при мониторинге полей в точном земледелии = Remote sensing for monitoring of fields in precision farming / С. В. Шайтура, Н. С. Шайтура, А. С. Прудкий [и др.] // Землеустройство, кадастр и мониторинг земель. 2023. Т. XVIII, № 8. С. 485-492. Библиогр.: с. 492.
- 14. ГОСТ "АЭРОФОТОСЪЕМКА ТОПОГРАФИЧЕСКАЯ Технические требования" от 01.06.2021 № ГОСТ Р 59328-2021
- 15. Теоретические и методические основы исследования рынка услуг с использованием беспилотных летальных аппаратов в сельском хозяйстве регионов / Н. Ю. Зубарев, А. А. Урасова, Л. В. Глезман [и др.] // Экономика сельскохозяйственных и перерабатывающих предприятий. 2024. № 10. С. 78-85. Библиогр.: с. 84-85 (11 назв.). doi 10. 31442/0235-2494-2024-0-10-78-85.
- 16. Развитие рынка беспилотных летательных аппаратов в сельском хозяйстве регионов Российской Федерации / Н. Ю. Зубарев, А. А. Урасова, Л. В. Глезман [и др.] // Экономика сельского хозяйства России. 2023. № 11. С. 65-73. Библиогр.: с. 71-72.
- 17. Фотограмметрия и дистанционное зондирование территории : учебное пособие / составители С. С. Рацен, А. В. Симаков, Т. В. Симакова, Е. П. Евтушкова, Н. В. Литвиненко.
- 18. Axelsson, P.E. DEM generation from laser scanner data using adaptive TIN models // International Archives of the Photogrammetry and Remote Sensing, -2000, C. 110-117.
- 19. Иванов К.А., Сидоров П.В. (2024). "Применение нейросетей для классификации объектов на аэрофотоснимках с БПЛА" Журнал: Геоматика, №2, с. 45–53.
- 20. Duran, Z.; Ozcan, K.; Atik, M.E. Classification of Photogrammetric and Airborne LiDAR Point Clouds Using Machine Learning Algorithms. // Drones -2021 №5., C 104.
- 21. V. H. Hiep, R. Keriven, P. Labatut and J. -P. Pons, Towards high-resolution large-scale multi-view stereo, IEEE Conference on Computer Vision and Pattern Recognition 2009, -C. 1430-1437.
- 22. Коротеев, М. В. Основы машинного обучения на Python : учебник; ВО Бакалавриат / М.В. Коротеев. Москва : КноРус, 2025. 431 с. Режим доступа: book.ru. ISBN 978-5-406-14728-3.
- 23. Laliberte A., Rango A. (2023). "Unmanned Aerial Systems for Photogrammetry and Remote Sensing: Applications in Agriculture, Environment, and Geosciences". Springer.
- 24. Zhang C., Kovacs J.M. (2022). "Small Unmanned Aircraft Systems for Environmental Research and Monitoring". Wiley.
- 25. Электронный каталог Научной библиотеки ТГУ http://www.lib.tsu.ru/
- 26. База знаний ООО «Геоскан» https://geoscan.freshdesk.com/support/solutions

Составитель программы:

Яновский Александр Александрович, канд. физ.-мат. наук, доцент, заведующий кафедры Электротехники, физики и охраны труда ФГБОУ ВО «Ставропольский ГАУ».

