Федеральное государственное бюджетное образовательное учреждение высшего образования «Ставропольский государственный аграрный университет»

Кафедра Математики

Попова С.В.

Методические указания для организации самостоятельной работы студентов

по дисциплине

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

38.03.05 Бизнес-информатика

Ставрополь 2019

Раздел 1: Теория вероятностей

Цель изучения темы: овладеть основными понятиями комбинаторики, теории вероятностей случайных событий и случайных величин; сформировать научное представление о случайных величинах, научиться решать основные типы задач теории вероятностей.

Задачи: рассмотреть основные законы комбинаторики, изучить методы решения комбинаторных задач, научиться классифицировать события, изучить способы решения задач на случайные события, рассмотреть виды случайных величин, их особенности и области применения, изучить методы исследования функций распределения случайных величин.

Студент должен знать:

- 1. до изучения темы (базисные знания):
- понятие множества;
- действия над множествами
- предел функции;
- основные теоремы о пределах;
- свойства функций,
- дифференциальное и интегральное исчисление;
- 2. после изучения темы:
- правила сложения и умножения в комбинаторике;
- перестановки, размещения, сочетания без повторений;
- перестановки, размещения, сочетания с повторениями;
- статическое и классическое определение вероятности;
- виды случайных событий;
- основные теоремы теории вероятностей;
- правила вычисления вероятностей случайных событий;
- понятия дискретной и непрерывной случайной величины;
- законы распределения случайных величин;
- формулы основных числовых характеристик дискретной и непрерывной случайной величины;
- свойства функции распределения непрерывной случайной величины;
- закон больших чисел.

Студент должен уметь:

- решать задачи, пользуясь двумя правилами и формулами комбинаторики;
- вычислять вероятности простых событий;
- вычислять вероятности сложных событий, пользуясь основными теоремами теории вероятностей;
- находить основные числовые характеристики случайной величины;
- находить вероятность попадания нормально распределённой случайной величины в заданный интервал.

Задания для самостоятельной внеаудиторной работы студентов по указанной теме:

- 1) Ознакомиться с теоретическим материалом по теме занятия с использованием конспектов лекций, рекомендуемой учебной литературой.
- 2) Ответить на вопросы для самоконтроля
- 1. Какие вопросы изучает комбинаторика?
- 2. Сформулируйте правило сложения.
- 3. Объясните суть правила умножения.
- 4. Какие комбинации называются соединениями?
- 5. Дайте определение перестановок элементов конечного множества (без повторений).
- 6. Напишите формулу числа перестановок множества, состоящего из n элементов (без повторений).
- 7. Какие сочетания называются размещениями (без повторений)?
- 8. Напишите формулы для вычисления числа размещений m элементов n элементного множества (без повторений).
- 9. В каком случае число размещений m элементов n элементного множества равно числу перестановок из n элементов?
- 10. Дайте определение числа сочетаний m элементов n элементного множества (без повторений).
- 11. Напишите формулы числа сочетаний m элементов n элементного множества (без повторений).
- 12. Сформулируйте свойства сочетаний.
- 13. В чем основное различие сочетаний и размещений?
- 14. Дайте определение перестановок с повторениями.
- 15. Напишите формулу для вычисления числа перестановок с повторениями для n элементного множества с k видами повторяющихся элементов.
- 16. Дайте определение размещений с повторениями.
- 17. Напишите формулу для вычисления числа размещений m элементов n элементного множества с повторениями.
- 18. Дайте определение сочетаний с повторениями.
- 19. Напишите формулу для вычисления сочетаний с повторениями.
- 20. Что изучает теория вероятностей?
- 21. Что называется испытанием?
- 22. Какие события называются случайными?
- 23. Какие события называются достоверными?
- 24. Какие события называются невозможными?
- 25. Как определяется классическая вероятность?
- 26. Какие события несовместны?
- 27. Какие события независимы?
- 28. Дайте определение противоположного события и выведите формулу для нахождения его вероятности.

- 29. Укажите условия применения понятия классической вероятности.
- 30. В каких пределах изменяется вероятность случайного события?
- 31. Дайте определение статистической вероятности.
- 32. Дайте определение геометрической вероятности и укажите условия её применения.
- 33. Вероятность какого события равна нулю?
- 34. Дайте определение и приведите примеры событий, образующих полную группу.
- 35. Вероятность какого события равна единице?
- 36. Какие события называются совместными?
- 37. Что называется полной группой событий?
- 38. Чем отличаются противоположные события?
- 39. Как определить, являются ли данные события зависимыми?
- 40. Докажите теорему о вероятности суммы двух несовместных событий.
- 41. Докажите теорему о вероятности суммы двух совместных событий.
- 42. Докажите теорему о вероятности произведения двух независимых событий.
- 43. Выведите теорему сложения вероятностей для трёх совместных событий.
- 44. Выведите теорему умножения вероятностей для любых трёх событий.
- 45. При каких условиях применяется формула полной вероятности?
- 46. Записать формулу полной вероятности?
- 47. Что такое гипотеза в формуле полной вероятности?
- 48. Для каких событий справедлива формула полной вероятности?
- 49. Какие ограничения накладываются на гипотезы в формуле полной вероятности?
- 50. Если для наступления события A необходимо выполнение только одного события B, может ли быть применена для вычисления его вероятности формула полной вероятности?
- 51. Что называется гипотезой?
- 52. Что позволяет оценивать формула Байеса?
- 53. Запишите формулу Байеса.
- 54. Можно ли переоценить вероятность гипотезы до того, как стал известен результат испытания?
- 55. Какие испытания называются независимыми?
- 56. Запишите формулу Бернулли.
- 57. Как вычислить вероятность того, что в n испытаниях событие наступит менее k раз?
- 58. Как вычислить вероятность того, что в n испытаниях событие наступит не менее k раз?
- 59. Как вычислить вероятность того, что в n испытаниях событие наступит более k раз?
- 60. Как вычислить вероятность того, что в n испытаниях событие наступит не более k раз?
- 61. Какие задачи решаются с помощью локальной теоремы Лапласа?
- 62. Как записывается локальная теорема Лапласа?

- 63. Какие задачи решаются с помощью интегральной теоремы Лапласа?
- 64. Сформулируйте интегральную теорему Лапласа?
- 65. Запишите локальную и интегральную функции Лапласа.
- 66. Интегральная функция Лапласа является чётной или нечётной?
- 67. Интегральная функция Лапласа является монотонной или нет?
- 68. Как найти значение локальной и интегральной функции Лапласа для конкретно заданного числового значения?
- 69. Как найти вероятность того, что частость отклонения от постоянной вероятности по абсолютной величине не больше, чем на величину є?
- 70. Допишите недостающие сведения в нижеследующем тексте:
- а) События называются......, если появление любого из них в результате испытания исключает появление других.
- б) События А и В называются для события А, если при наступлении события В обязательно наступает событие А.
- 71. Какая случайная величина называется дискретной?
- 72. Что называют законом распределения дискретной случайной величины?
- 73. Основное свойство закона распределения.
- 74. Как определяется сумма случайных величин?
- 75. Как определяется произведение случайной величины на число?
- 76. Как определяется произведение случайных величин?
- 77. Что называется многоугольником распределения?
- 78. Приведите пример дискретной случайной величины.
- 79. Составьте закон распределения дискретной случайной величины X числа выпадений чётного числа очков на двух игральных костях
- 80. Что называется функцией распределения случайной величины?
- 81. Какая случайная величина называется непрерывной?
- 82. Какими свойствами обладает функция распределения случайной величины?
- 83. Какой функцией является функция распределения дискретной случайной величины?
- 84. Чем характеризуется функция распределения непрерывной случайной величины?
- 85. Как найти функцию распределения дискретной случайной величины по заданному закону её распределения?
- 86. Как составить закон распределения дискретной случайной величины по её функции распределения?
- 87. Чему равна вероятность принятия конкретного значения для непрерывной случайной величины?
- 88. В каком промежутке лежат значения функции распределения?
- 89. Какие предельные соотношения справедливы для функции распределения?
- 90. Как найти вероятность того, что случайная величина примет значения из некоторого интервала?
- 91. Чем отличаются термины "функция распределения" и "интегральная функция распределения"?

- 92. Чем характеризуется линия, изображающая график функции распределения дискретной случайной величины?
- 93. Чем характеризуется линия, изображающая график непрерывной случайной величины?
- 94. Чему равно минимальное значение функции распределения?
- 95. В каких пределах изменяется функция распределения?
- 96. Чему равно максимальное значение функции распределения?
- 97. Что называют плотностью распределения вероятностей непрерывной случайной величины?
- 98. Как найти вероятность того, что непрерывная случайная величина принимает значение, принадлежащее интервалу (a; b)?
- 99. Какими свойствами обладает плотность распределения?
- 100. Как найти плотность распределения по функции распределения?
- 101. Как найти функцию распределения по плотности распределения?
- 102. Какова область изменения плотности распределения?
- 103. Какой может быть область изменения функции плотности распределения?
- 104. Что такое плотность вероятностей?
- 105. Как определить дифференциальную функцию распределения?
- 106. Чему равен несобственный интеграл от плотности распределения в пределах от $-\infty$ до $+\infty$?
- 107. На основе какого свойства плотности распределения можно находить значения её параметра?
- 108. Для каких случайных величин вводится понятие плотности распределения?
- 109. Можно ли по виду функции плотности распределения судить о значениях, принимаемых случайной величиной?
- 110. Возможно ли, построить функцию плотности распределения для дискретной случайной величины?
- 111. Объясните вероятностный смысл плотности распределения.
- 112. Запишите плотность вероятности для равномерного закона распределения случайной величины.
- 113. Что называется математическим ожиданием дискретной случайной величины?
- 114. Свойства математического ожидания.
- 115. Что называется дисперсией дискретной случайной величины?
- 116. Запишите свойства дисперсии.
- 117. Запишите формулу вычисления дисперсии.
- 118. Что называется средним квадратичным отклонением?
- 119. Какое распределение называется биномиальным?
- 120. Чему равно математическое ожидание случайной величины, распределённой по биномиальному закону?
- 121. Чему равна дисперсия случайной величины, распределённой по биномиальному закону?
- 122. Как определяется распределение Пуассона?

- 123. Как найти математическое ожидание случайной величины, распределённой по закону Пуассона?
- 124. Как вычислить дисперсию случайной величины, распределённой по закону Пуассона?
- 125. Как записывается плотность равномерного распределения?
- 126. Определить показательное распределение.
- 127. Какое распределение называется нормальным?
- 128. Чему равно математическое ожидание случайной величины, распределенной по нормальному закону?
- 129. Чему равна дисперсия случайной величины, распределённой по нормальному закону?
- 130. Какое распределение называется нормированным нормальным распределением?
- 131. Какие свойства имеет функция распределения нормального закона?
- 132. Что называется потоком событий?
- 133. Какие свойства имеет простой поток событий?
- 134. Какое распределение используют для описания простого потока событий?
- 135. Какое распределение используют для описания промежутков времени между наступлением событий в простом потоке событий?
- 136. Допишите недостающие сведения в нижеследующем тексте:
 - Математическим ожиданием дискретной случайной величины x называется каждого из всех её возможных значений на соответствующие
 - ullet Дисперсией дискретной случайной величины X называется математическое отклонения этой величины от её математического
- 137. Вероятность заболевания гепатитом для жителей некоторой области в определенный период года составляет 0,0005. Оцените вероятность того, что из обследованных 10000 жителей 5 окажутся заболевшими?
- 138. Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент знает предложенные ему экзаменатором три вопроса.
- 139. Найдите математическое ожидание, дисперсию и среднее квадратичное отклонение случайной величины, заданной следующим законом распределения:

X	1	4	6	7
P	0.1	0.2	0.2	0.5

- 140. Предполагая закон распределения роста студентов нормальным с математическим ожиданием $\mu=175$ см и дисперсией $\sigma^2=100$ см², найдите вероятность того, что рост произвольно выбранного студента окажется в пределах от 180 до 190 см.
- 3) Проверить свои знания с использованием тестового контроля

	Задания	Варианты ответов
	Раздел математики, в котором изучается,	
	сколько различных комбинаций,	1) математическая логика;
1	удовлетворяющим тем или иным	2) общая алгебра;
	условиям, можно составить из заданных	3) комбинаторика.
	объектов, – это	
		1) упорядоченное k -элементное
2	$C = C^k = C$	подмножество п -элементного множества;
2	Символ C_n^k обозначает	2) число размещений из n элементов по k; 3) число сочетаний из n различных
		предметов по к.
		1) методы решения обыкновенных
		дифференциальных уравнений;
		2) способы определения вероятности
3	Комбинаторика изучает	возникновения того или иного события;
	1 3	3) способы выборки и расположения
		предметов, свойства различных
		конфигураций.
		1) формулируются для конечного числа
		элементов;
4	Задачи комбинаторики	2) предполагают использование методов
-		математической статистики;
		3) рассматривают только бесконечные
		множества.
5	Сколько существует трехзначных	1) 81;
3	номеров, не содержащих цифры 8?	2) 512; 3) 729.
	Сколько слов, содержащих 5 букв, можно	,
	составить из 33 букв русского алфавита	1) 335;
6	при условии, что любые две стоящие	2) 33324;
	рядом буквы различны?	3) 332323.
		1) $C_n^k = C_{n-1}^k$;
7	Для сочетаний справедливо соотношение	2) $C_n^k = C_n^{n-k}$;
′		
L_		3) $C_n^k = C_{n-1}^{k-1}$.
	Как называется общий принцип	
	комбинаторики, утверждающий, что если	1) принцип Хемминга;
8	объект A можно выбрать m способами, а	1) принцип Лемминга, 2) правило произведения;
	объект B выбрать n способами, то выбор	3) правило сумм.
	« A или B » можно сделать $m+n$	C) Translate Cylinia.
	способами?	
		1) отношение числа испытаний, при
		которых появилось ожидаемое событие к
	Вероятностно случайного соблача	общему числу испытаний; 2) предел, к которому стремится
9	Вероятностью случайного события называется:	
	пазывастся.	относительная частота события при бесконечно большом числе испытаний;
		3) величина, обратная относительной
		частоте случайного события.
10	Относительной частотой случайного	1) отношение числа испытаний, при
		, ,,,,,,,

	события называется:	которых появилось ожидаемое событие к		
		общему числу испытаний;		
		2) предел, к которому стремится отношение		
		числа ожидаемых событий к общему числу		
		испытаний;		
		3) число испытаний, при которых		
		появилось ожидаемое событие.		
	Какая из характеристик случайного	1) вероятность случайного события;		
11	события является случайной величиной?	2) относительная частота появления этого		
	coolinia alimetea esty tamion besit innon.	события.		
	Вероятность случайного события может	1) от -1 до +1;		
12	изменяться в пределах:	2) от 0 до 1;		
	изменяться в пределах.	3) от - ∞ до + ∞ .		
		1) достоверного;		
13	Вероятность, какого события равна 1?	2) невозможного;		
		3) случайного.		
		1) достоверного;		
14	Вероятность, какого события равна 0?	2) невозможного;		
	r	3) случайного.		
		1) числу всех событий этой группы;		
15	Сумма вероятностей полной группы	2) 1;		
10	событий равна:	3) любому числу от -1 до +1.		
		1) сложить вероятности этих событий;		
	Чтобы вычислить вероятность	2) перемножить вероятности этих событий;		
16	одновременного наступления нескольких	3) разделить сумму вероятностей этих		
	совместных событий нужно:	событий на число событий.		
		1) несовместными;		
17	Теорема сложения применима только к	2) совместными;		
1 /	тем событиям, которые являются:	2) совместными,3) зависимыми.		
		,		
18	Теорема умножения применима только к тем событиям, которые являются:	1) несовместными;		
10		2) совместными;		
	-	3) противоположными.		
		1) зависимость вероятности случайной		
		величины от значения случайной величины;		
	11	2) зависимость плотности вероятности		
19	Что является законом распределения для	случайной величины от значения		
	дискретных случайных величин?	случайной величины;		
		3) зависимость среднего выборочного		
		значения от числа членов статистического		
		ряда.		
		1) зависимость вероятности случайной		
		величины от значения случайной		
	Что является законом распределения для непрерывных случайных величин?	величины;		
		2) зависимость плотности вероятности		
20		случайной величины от значения		
		случайной величины;		
		3) зависимость среднего выборочного		
		значения от числа членов статистического		
		ряда.		
21	Какое из определений относится к	1) это наиболее вероятное значение		
21	понятию «Математическое ожидание»?	случайной величины;		
		7		

		2) это среднее выборочное значение
		случайной величины;
		3) это объём выборки.
		1) квадратный корень из дисперсии;
22	Математическим ожиданием дискретной	2) сумма произведений каждого из ее
22	случайной величины называется:	возможных значений на соответствующие
		вероятности;
	Плотность вероятности непрерывной	1) всегда ≥0;
23	случайной величины:	2) всегда ≥0;
		3) всегда =1.
	На диаграмме изображены два графика нормального закона распределения.	
	Какими параметрами они отличаются?	
	какими параметрами они отличаются:	1) дисперсиями;
	0,035	2) математическими ожиданиями;
24	0,025	3) математическими ожиданиями и
	\$ 0,00 0,015	дисперсиями;
	0.01	4) критериями Стьюдента; 5) другими параметрами.
		3) другими параметрами.
	-10 0 10 20 30 40 50 X	
	На диаграмме изображены два графика нормального закона распределения. Чему	
	равны математические ожидания этих	
	распределений?	1) 0 0025
	0.035	1) 0 и 0,035;
25	0,03 -	2) 20 и 20; 3) -10 и 50;
23	0,025 \$\hat{x}\$ 0,02 -	4) на диаграмме их значения
	0,015	не указаны.
	0,01 - 0,005 -	
	-10 0 10 20 30 40 50	
	x	
	Дисперсия случайной величины равна	1) 0,3;
26	0,09. Чему равно среднее квадратичное	2) 0,4;
	отклонение?	3) 0,5.
	Случайная величина представлена	
	следующим законом распределения	1) 3;
27	X 1 2 3	2) 2;
27	P 0,25 0,5 0,25	3) 5;
	Чему равно математическое ожидание	4) 4.
	этой величины?	
	Чему равно среднее квадратичное	1) 0,5;
28	отклонение случайной величины, если ее	2) 0,6;
	дисперсия равна 0,25?	3) 0,7.

4) Выполнить другие задания, предусмотренные рабочей программой по дисциплине.

Раздел 2: Математическая статистика

Цель изучения темы: овладеть основными понятиями математической статистики; научиться методам оценки неизвестных параметров на основе экспериментальных данных; познакомиться с методами проверки гипотез.

Задачи: рассмотреть вариационные ряды, их особенности и области применения, изучить методы исследования процессов с помощью корреляции и регрессии, проверки гипотез.

Студент должен знать:

- 1. до изучения темы (базисные знания):
- элементы теории погрешностей;
- случайные величины;
- основные числовые характеристики дискретной случайной величины;
- основные числовые характеристики непрерывной случайной величины;
- нормальный закон распределения.

2. после изучения темы

- статистическая совокупность;
- генеральная и выборочная совокупность;
- статистический дискретный и интервальный ряд распределения;
- вариационный ряд;
- полигон, гистограмма, кумулята, огива;
- мода, медиана, выборочная средняя;
- выборочная и исправленная дисперсия;
- выборочное и исправленное среднее квадратичное отклонение;
- коэффициент вариации;
- асимметрия, эксцесс;
- точечные и интервальные оценки основных числовых характеристик генеральной совокупности;
- распределение Пирсона, Стъюдента;
- корреляция и регрессия;
- общие принципы проверки гипотез;
- нулевая и альтернативная гипотеза;
- уровень значимости;
- критическая область, область принятия гипотезы;
- критерии для проверки гипотезы о вероятности события, о математическом ожидании.

Студент должен уметь:

- составлять вариационные ряды и находить их выборочные характеристики;
- строить полигоны и гистограммы частот и относительных частот;

- применять к исследованию вариационных рядов точечные и интервальные оценки;
- строить линии регрессии и исследовать корреляционные связи;
- применять теоретические критерии для проверки статистических гипотез.

Задания для самостоятельной внеаудиторной работы студентов по указанной теме:

- 1) Ознакомиться с теоретическим материалом по теме занятия с использованием конспектов лекций, рекомендуемой учебной литературой.
- 2) Ответить на вопросы для самоконтроля
- 1. Дайте понятие генеральной совокупности и выборки.
- 2. Дайте определение вариационного ряда.
- 3. Можно ли восстановить по вариационному ряду выборку?
- 4. Дайте определение выборочного среднего.
- 5. Как строится гистограмма? полигон частот?
- 6. Приведите формулу для вычисления выборочного среднего по вариационному ряду.
- 7. Приведите формулу для вычисления выборочной дисперсии по вариационному ряду.
- 8. Укажите два различных способа найти выборочную дисперсии по вариационному ряду.
- 9. Как изменятся выборочные дисперсия и среднее квадратичное отклонение, если прибавить к каждому элементу выборки постоянную c?
- 10. Как изменятся выборочные дисперсия и среднее квадратичное отклонение, если умножить каждый элемент выборки на постоянную c?
- 11. Что характеризует выборочный коэффициент асимметрии?
- 12. Как называется средний член вариационного ряда?
- 13. Что такое медиана вариационного ряда?
- 14. Каким образом при группировке выборки можно найти оптимальное число интервалов?
- 15. Каким образом при группировке выборки рассчитывается длина интервала?
- 16. Какие графические характеристики выборки дают представление о графике плотности?
- 17. Какие графические характеристики выборки дают представление о графике функции распределения?
- 18. Чему равняется площадь под гистограммой частот?
- 19. Можно ли восстановить по гистограмме относительных частот вариационный ряд?
- 20. Можно ли восстановить по гистограмме частот группированный ряд?
- 21. Дайте определение медианного интервала.
- 22. Дайте определение модального интервала.

- 23. Как определяются состоятельные и несмещенные оценки для математического ожидания и дисперсии?
- 24. Как определяются состоятельная и несмещенная оценка для вероятности?
- 25. Дайте понятие доверительного интервала, доверительной вероятности.
- 26. Как найти доверительный интервал для математического ожидания при известном σ ?
- 27. Распределение Стьюдента. Доверительный интервал для математического ожидания при неизвестном σ .
- 28. Распределение χ^2 . Доверительный интервал для дисперсии.
- 29. Доверительный интервал для вероятности.
- 30. Сформулируйте общую задачу проверки гипотез.
- 31. Как определяются критическая область и область принятия решений?
- 32. Как осуществляется проверка гипотез о законе распределения (критерий Пирсона)?
- 33. Допишите недостающие сведения в нижеследующем тексте:
 - Свойства выборочной совокупности тем лучше отражают свойства......совокупности, чем больше ее......
 - Наблюдаемые значения признака называют.....
- 34. Допишите недостающие сведения в нижеследующем тексте:
 - Ценность выборочных характеристик определяется тем, что с их помощью можно оценить соответствующие.....характеристики.....совокупности
 - В статистике используютсоответствующие заданнойвероятности
- 35. Постройте полигоны частот и относительных частот по данным следующей таблицы:

X	25	28	30	32	34	36	40
m	5	15	17	24	25	16	10

36. Дайте точечную оценку генеральной дисперсии по данному распределению выборки объема n =100:

X	1250	1280	1290	1300
m	10	20	30	40

- 37. При подсчете количества листьев на каждом из 20 комнатных растений определенного вида получены следующие результаты:
- 9, 10, 7, 13, 12, 8, 9, 10, 12, 11, 11, 7, 8, 9, 12, 12, 13, 13, 8, 10. При доверительной вероятности γ =0,95 дайте интервальную оценку генеральной средней количества листьев на растениях.
- 3) Проверить свои знания с использованием тестового контроля

Задания	Варианты ответов
---------	------------------

1	Статистической совокупностью называется множество объектов, характеризуемых:	а) только некоторым качественным признаком; b) только некоторым количественным признаком; c) некоторым количественным или качественным признаком.
2	Множество всех студентов-первокурсников страны представляет собой:	а) генеральную совокупность; b) выборочную совокупность.
3	Объекты выборочной статистической совокупности отбираются из соответствующей генеральной совокупности:	а) определенным образом; b) случайным образом.
4	Свойства выборки тем лучше отражают соответствующие свойства генеральной совокупности:	а) чем меньше объем выборки;b) чем больше объем выборки;c) от объема выборки это не зависит.
5	Как называется выборка, по данным которой можно достаточно уверенно судить об интересующем нас признаке генеральной совокупности?	а) бесповторной;b) повторной;c) возвратной;d) репрезентативной.
6	Сумма частот вариант выборочной совокупности:	а) меньше объема выборки;b) равна объему выборки;c) больше объема выборки.
7	Графическим изображением статистического дискретного ряда распределения является:	а) полигон частот или относительных частот; b) гистограмма частот или относительных частот.
8	Ломаная, отрезки которой соединяют точки с координатами $(x_1; n_1), (x_2; n_2),, (x_k; n_k)$ называется:	а) полигон частостей; b) полигон суммы частот; c) полигон относительных частот; d) полигон частот.
9	Графическим изображением статистического интервального ряда распределения является:	а) полигон частот или относительных частот; b) гистограмма частот или относительных частот.
10	Какие статистические совокупности относятся к генеральным?	а) если число членов совокупности $n \to \infty$; b) если число членов совокупности ограничено; c) если совокупность состоит только из дискретных величин.
11	Какие статистические совокупности относятся к выборочным?	а) если число членов совокупности $n \to \infty$; b) если число членов совокупности ограничено; c) если совокупность состоит только из дискретных величин.
12	Выборочное среднее квадратичное отклонение определяется по формуле:	a) $\bar{x}_B = \frac{1}{n} \sum_{i=1}^n x_i m_i$; b) $\sigma_B = \sqrt{D_B}$; c) $D_B = \bar{x}^2 - (\bar{x}_B)^2$;

		d) $\bar{r}_{-} = \sum_{n=1}^{n} r_{n} n$
		$d) \ \overline{x}_B = \sum_{i=1}^n x_i p_i \ .$
	Числовые характеристики, каких статистических	а) генеральных;
13	совокупностей являются случайными	b) выборочных;
	величинами?	с) ни тех ни других.
	Генеральная средняя определяется по формуле:	a) $\bar{x} = \frac{1}{n} \sum_{i=1}^{k} m_i x_i$;
14		b) $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x_i$;
		c) $\sigma^2 = \frac{1}{N} \sum_{i=1}^{k} (x_i - \overline{X})^2$;
		d) $s^2 = \frac{1}{n-1} \sum_{i=1}^k m_i (x_i - \bar{x})^2$.
		а) иметь выборку из генеральной
		совокупности;
	Ляд определения тонении ву оненов нисловия	b) применить метод наименьших ква пратов:
15	Для определения точечных оценок числовых характеристик случайной величины необходимо:	квадратов; с) построить гистограмму
		распределения относительных
		частот;
		d) все выше перечисленные.
	Дополните:	
16	Разность между случайной величиной и ее	
	математическим ожиданием называется	
		а) исправленная выборочная
	Наилучшей оценкой генеральной средней	дисперсия; b) средняя выборочная;
17	паилучшей оценкой генеральной средней является:	с) генеральная дисперсия;
		d) исправленное среднее
		квадратичное отклонение.
		a) $x = \frac{1}{n} \sum_{i=1}^{k} m_i x_i$;
18	Генеральной лисперсией называется:	b) $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x_i$;
		c) $\sigma^2 = \frac{1}{N} \sum_{i=1}^{k} (x_i - \overline{X})^2$;
		d) $s^2 = \frac{1}{n-1} \sum_{i=1}^k m_i (x_i - \bar{x})^2$.
		а) тем меньше соответствующая
	Чем шире доверительный интервал:	доверительная вероятность; b) тем больше соответствующая
19		доверительная вероятность;
		с) доверительная вероятность не
		зависит от ширины доверительного
		интервала.
20	Исправленной выборочной дисперсией	a) $\bar{x} = \frac{1}{n} \sum_{i=1}^{k} m_i x_i$;
20	называется:	$\begin{array}{c} a) \ x = -\sum_{i=1}^{n} m_i x_i \ ; \end{array}$
<u> </u>		

	b) $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x_i$;
	c) $\sigma^2 = \frac{1}{N} \sum_{i=1}^k (x_i - \overline{X})^2$;
	d) $s^2 = \frac{1}{n-1} \sum_{i=1}^k m_i (x_i - \bar{x})^2$.

4) Выполнить другие задания, предусмотренные рабочей программой по дисциплине.